Page 308 - Air and Gas Drilling Manual
P. 308

f
                                      b =
                                                                                       (7-49)
                                                  S 
                                       i    gD   R   2  w ˙ g 2 2  Chapter 7: Reverse Circulation Models    7-17
                                                      π
                                           2          
                                               i           4
                                                        D i
                                                      4
                               In the above form, both sides of Equation 7-47 can be integrated.  Using Equations
                               7-48 and 7-49 the solution to Equation 7-47 is
                                          ln P (  2  +  b T av)  =  i  h               (7-50)
                                       1                P ai  a     H
                                                     2
                                       2           i         T av   0
                                                        P at
                               Evaluating Equation 7-50 at the limits and rearranging the results gives
                                         P 2  +  b T   2  a
                                                  2
                                      ln   ai  i  av   =  i  H                       (7-51)
                                          P at 2  +  b T    T av
                                                  2
                                               i
                                                 av
                               Raising both sides of Equation 7-51 to the natural exponential exponent gives
                                                    2  aH
                                        2      2       i
                                      P ai  +  b T av  T av
                                            i
                                        2      2  =  e                                 (7-52)
                                      P at  +  b T av
                                            i
                               Equation 7-52 can be rearranged and a solution obtained for P ai.  This yields
                                                                     .
                                                        2  aH       05
                                                           i
                                                             −
                                                     2
                                                          T av
                                      P  =   P (  2  +  bT av)  ebT  2               (7-53)
                                       ai     at  i            i  av 
                                                                   
                                   The flow of gas to the well must be sufficient to  carry solid  rock cuttings from
                               the bottom  of the annulus to  the  surface.    Therefore,  it  is  assumed  that  the  flow
                               condition  in  both  the  inside  of  drill  string  and  the  annulus  is  turbulent.    The
                               empirical von Karman relationship for determining the approximate Fanning friction
                               factor for the inside of the drill string is
                                                             2
                                                           
                                      f =        1                                 (7-54)
                                                 D       
                                                   i
                                                
                                                    
                                                      + 1 14
                                           2 log.          
                                                
                                                  e 
                                                           
   303   304   305   306   307   308   309   310   311   312   313