Page 306 - Algae
P. 306

Algae and Men                                                               289

                 closely-related PUAs have been isolated from Thalassiosira rotula, Skeletonema costatum, and
                 Pseudonitzschia delicatissima, namely 2-trans-4-cis-7-cis-decatrienal, 2-trans-4-trans-7-cis-deca-
                 trienal and 2-trans-4-trans-decadienal. In the same study these aldehydes were found to inhibit
                 cleavage of sea urchin embryos, reduce growth of Caco-2 cells and hatching of copepod eggs.
                 The structural element shared by these compounds, the unsaturated aldehyde group, is able to
                 form adducts with nucleophiles and is thus capable of inducing reactions that are toxic to the
                 cell. The harmful effects of PUAs have been demonstrated at the organism level as inducers of
                 apoptosis in sea urchin embryos, at the cell level as cytotoxicity in human cell lines and at the
                 protein level by deactivation of enzymes.
                     Table 7.8 summarizes toxic algae and the corresponding metabolites.


                 SUGGESTED READING

                 Abdulqader, G., Barsanti, L., and Tredici, M. R., Harvest of Artrosphira platensis from Lake Kossorom (Chad)
                   and its household usage among the Nanembu, Journal of Applied Phycology, 12, 493–498, 2000.
                 Andersen, R. A., Ed., Algal Culturing Techniques, Elsevier Academic Press, Burlington, 2005.
                 Amin, I. and Hong, T. S. S. Antioxidant activity of selected commercial seaweeds. Malaysian Journal of
                   Nutrition, 8, 167–177, 2002.
                 Barbera, C., Bordehore, C., Borg, J. A., Glemarec, M., Grall, J., Hall-Spencer, J. M., De La Huz, Ch.,
                   Lanfranco, E., Lastra, M., Moore, P. G., Mora, J., Pita, M. E., Ramos-Espla, A. A., Rizzo, M., Sanchez-
                   Mata, A., Seva, A., Schembri, P. J., and Valle, C., Conservation and management of northeast Atlantic
                   and Mediterranean maerl beds, Aquatic Conservation: Marine and Freshwater Ecosystems, 13, s65–s76,
                   2003.
                 Barsanti, L., Bastianini, A., Passarelli, V., Tredici, M. R., and Gualtieri, P., Fatty acid content in wild type and
                   WZSL mutant of Euglena gracilis, Journal of Applied Phycology, 12, 515–520, 2000.
                 Barsanti, L., Vismara, R., Passarelli, V., and Gualtieri, P., Paramylon (b-1,3-glucan) content in wild type and
                   WZSL mutant of Euglena gracilis. Effects of growth conditions, Journal of Applied Phycology, 13, 59–65,
                   2001.
                 Becker, W., Microalgae in human and animal nutrition, in Handbook of Microalgae Mass Culture and
                   Biotechnology and Applied Phycology. Richmond, A., Ed., Blackwell Publishing, Malden, 2004.
                 Borowitzka, M. A., Microalgae for aquaculture: opportunities and constraints, Journal of Applied Phycology,
                   9, 393–401, 1997.
                 Borowitzka, M. A., Commercial production of microalgae: ponds, tanks, tubes and fermentors, Journal of
                   Biotechnology, 70, 313–3121, 1999.
                 Brown, M. R., Mular, M., Miller, I., Farmer, C., and Trenerry, C., The vitamin content of microalgae used in
                   aquaculture, Journal of Applied Phycology, 11, 247–255, 1999.
                 Buschmann, A. H., Correaa, J. A., Westermeier, R., Hernandez-Gonzales, M. C., Norambuena, R., Red algal
                   farming in Chile: a review, Aquaculture, 194, 203–220, 2001.
                 But, P. P., Cheng, L., Chan, P. K., Lau, D. T., and But, J. W., Nostoc flagelliforme and faked items retailed in
                   Hong Kong, Journal of Applied Phycology, 14, 143–145, 2002.
                 Chini-Zittelli, G., Rodolfi, L., and Tredici, M. R., Mass cultivation of Nannochloropsis sp. in annular reactors,
                   Journal of Applied Phycology, 15, 107–114, 2003.
                 Cohen, Z., Ed., Chemical from Microalgae, Taylor and Francis, London, 1999.
                 Daranas, A. H., Norte, M., and Fernandez, J. J., Toxic marine microalgae, Toxicon, 39, 1101–1132, 2001.
                 Delisle, H., Allasoumgue, F. B., Nandjingar, K., and Lasorsa, C., Household food consumption and nutritional
                   adequacy in wadi zones of Chad. Ecology, Food and Nutrition, 25, 229–248, 1991.
                 Delpeuch, F. A. J. and Cavalier, C., Consommation alimentaire et apport nutritionnel des algues bleues chez
                   quelques populations du Kanem (Chad), Annales Nutrition Alimentation, 29, 497–516, 1976.
                 Dungeard, P., Su rune algue bleue alimentaire pour l’homme, Actes Society Linnean Bordeaux, 91, 39–41, 1940.
                 Faulkner, D. J., Marine natural products, Natural Products Reports, 18, 1–49, 2001.
                 Farra, W. V., Tecuitlatl: a glimpse of Atzec food technology, Nature, 211, 341–342, 1966.
                 Funaki, M., Nishizawa, M., Sawaya, T., Inoue, S., and Yamagishi, T. Mineral composition in the holdfast of
                   three brown algae of the genus Laminaria, Fisheries Science, 67, 295–300, 2001.
   301   302   303   304   305   306   307   308   309   310   311