Page 214 - Analysis and Design of Energy Geostructures
P. 214
Deformation in the context of energy geostructures 187
4.10.10 Constitutive modelling of materials involved with energy
geostructures
In the context of the modelling of the mechanical behaviour of materials for the anal-
ysis and design of energy geostructures, the reinforced concrete that often characterises
such structures can be described in most situations as linear thermoelastic. In contrast,
the mechanical behaviour of the soil and rock surrounding energy geostructures is
often described as either (1) thermoelastic, (2) thermoelastic, perfectly plastic, (3) ther-
moelastic, plastic with hardening or (4) thermoelastic, thermoplastic with hardening.
Linear or nonlinear stress strain relations are employed for the previous purpose, and
the choice of accounting for plasticity depends on factors such as the stress state and
the stress history characterising the modelled materials.
References
Abuel-Naga, H., Bergado, D.T., Bouazza, A., Ramana, G., 2007. Volume change behaviour of saturated
clays under drained heating conditions: experimental and constitutive modelling. Can. Geotech. J.
44, 942 956.
Al-Tabbaa, A., Wood, D.M., 1989. An experimentally based “bubble” model for clay. In: Third
International Conference on Numerical Models in Geomechanics, pp. 91 99.
Atkinson, J.H., Bransby, P., 1978. The Mechanics of Soils. McGraw-Hill.
Boley, B.A., Weiner, J.H., 1997. Theory of Thermal Stresses. Dover Publications, Mineola, NY.
Bourne-Webb, P., Bodas Freitas, T., Freitas Assunção, R., 2016a. Soil pile thermal interactions in
energy foundations. Geotechnique 66 (2), 167 171.
Bourne-Webb, P., Burlon, S., Javed, S., Kürten, S., Loveridge, F., 2016b. Analysis and design methods
for energy geostructures. Renew. Sust. Energ. Rev. 65, 402 419.
Carpinteri, A., 1995. Scienza delle costruzioni 1. Pitagora Editrice Bologna, Bologna.
Cauchy, A.-L., 1823. Résumé des leçons données à l'école royale polytechnique sur le calcul
infinitésimal. Imprimerie Royale.
Coulomb, C., 1773. Essai sur une application des règles de maximis et minimis à quelques problèmes de
statique, relatifs à l’architecture. De l’Imprimerie Royale, Paris.
Cui, Y.J., Sultan, N., Delage, P., 2000. A thermomechanical model for saturated clays. Can. Geotech. J.
37 (3), 607 620.
Dafalias, Y., Herrmann, L., 1982. Bounding surface formulation of soil plasticity. In: Zienkiewicz, G.P.O.
(Ed.), Soil Mechanics: Transient and Cyclic Loads. John Wiley & Sons.
Dafalias, Y., Popov, E., 1975. A model of nonlinearly hardening materials for complex loadingEin
Modell für Werkstoffe mit nichtlinearer Verfestigung unter zusammengesetzter Belastung. Acta
Mech. 21 (3), 173 192.
Davis, R.O., Selvadurai, A.P., 1996. Elasticity and Geomechanics. Cambridge University Press.
Di Donna, A., 2014. Thermo-mechanical aspects of energy piles. Laboratory of Soil Mechanics. Swiss
Federal Institute of Technology in Lausanne (EPFL), Lausanne.
Drucker, D.C., Prager, W., 1952. Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10
(2), 157 165.
Drucker, D.C., Gibson, R.E., Henkel, D.J., 1957. Soil mechanics and work-hardening theories of plastic-
ity, Trans., 122. ASCE, pp. 338 346.
Duhamel, J.M.C., 1835. Les phénomènes thermo-mécaniques. J. de l'école Polytech. Second Memoire
15, 1 57.
Einstein, A., 1916. Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. 354 (7), 769 822.
Farouki, O.T., 1981. Thermal properties of soils. Cold Regions Sci. Technol. 5 (1), 67 75.