Page 225 - Analysis and Design of Energy Geostructures
P. 225

198   Analysis and Design of Energy Geostructures


                    ðT 2 T 0 Þ [ C] is the applied temperature variation. In matrix form, the

                    above reads:
                           2                                           3
                             1=E    2υ=E 2υ=E       0      0       0               α
                   2    3                                               2     3 2    3
                     ε xx                                                 σ xx
                             2υ=E   1=E   2υ=E      0      0       0   7
                     ε yy  6
                   6    7                                              7 σ yy  7 6  α 7
                                                                        6
                           6
                   6    7                                               6     7 6    7
                           6  2υ=E 2υ=E    1=E      0      0       0   7
                        7 5 6                                                        7ðT2T 0 Þ
                                                                        6
                   6  ε zz  7                                          7 σ zz  7 6  α 7
                   6                                                    6     726
                           6   0      0      0   1=ð2GÞ    0       0
                                                                        6
                   6  ε xy 7                                           7 σ xy 7 6  0 7
                           6                                           7
                   4    5                                               4     5 4    5
                     ε yz  4   0      0      0      0   1=ð2GÞ     0   5 σ yz      0
                     ε zx      0      0      0      0      0    1=ð2GÞ    σ zx     0
                    where for the considered material E [Pa] is the Young’s modulus, υ [ ]
                    is the Poisson’s ratio and G [Pa] is the shear modulus. In extended form,
                    the above reads:

                                     ε xx 5  1   σ xx 2 υσ yy 1 σ zz    2 αðT 2 T 0 Þ
                                          E

                                     ε yy 5  1   σ yy 2 υσ zz 1 σ xx Þ 2 αðT 2 T 0 Þ
                                                    ð
                                          E

                                     ε zz 5  1   σ zz 2 υσ xx 1 σ yy     2 αðT 2 T 0 Þ
                                          E
                                                         1
                                                  ε xy 5   σ xy
                                                        2G
                                                         1
                                                  ε yz 5   σ yz
                                                        2G


                                                         1
                                                  ε zx 5   σ zx
                                                        2G
                q. If the stress tensor is expressed in terms of the strain tensor, it results

                                           σ ij 5 D ijkl ½ε kl 1 β ðT 2 T 0 ފ
                                                           kl
                       Thus the thermally induced stress is proportional to the elastic stiff-
                    ness tensor of the material D ijkl .
   220   221   222   223   224   225   226   227   228   229   230