Page 287 - Analysis and Design of Energy Geostructures
P. 287
262 Analysis and Design of Energy Geostructures
Ng, C.W.W., Wang, S.H., Zhou, C., 2016. Volume change behaviour of saturated sand under thermal
cycles. Géotech. Lett. 6 (2), 124 131.
Ng, C.W.W., Mu, Q., Zhou, C., 2017. Effects of boundary conditions on cyclic thermal strains of clay
and sand. Géotech. Lett. 7 (1), 73 78.
Ooi, L.H., Carter, J.P., 1987. A constant normal stiffness direct shear device for static and cyclic loading.
Geotech. Test. J. 10 (1), 3 12.
Paaswell, R.E., 1967. Temperature effects on clay soil consolidation. J. Soil Mech. Found. Div. 93
(SM3), 9 22.
Plum, R.L., Esrig, M.I., 1969. Some Temperature Effects on Soil Compressibility and Pore Water
Pressure. Effect of Temperature and Heat on Engineering Behaviour of Soils. HRB, Special Report
No. 103, pp. 231 242.
Porcino, D., Fioravante, V., Ghionna, V.N., Pedroni, S., 2003. Interface behavior of sands from constant
normal stiffness direct shear tests. ASTM Geotech. Test. J. 26 (3), 289 301.
Potyondy, J.G., 1961. Skin friction between various soils and construction materials. Geotechnique 11
(4), 339 353.
Pusch, R., 1986. Permanent Crystal Lattice Contraction, a Primary Mechanism in Thermally Induced
Alteration of Na Bentonite. In: MRS Online Proceedings Library, vol. 84.
Randolph, M.F., Wroth, C., 1981. Application of the failure state in undrained simple shear to the shaft
capacity of driven piles. Geotechnique 31 (1), 143 157.
Recordon, E., 1993. Déformabilité des sols non saturés à diverses températures. Rev.Fr. Géotech. 65,
37 56.
Robinet, J.-C., Rahbaoui, A., Plas, F., Lebon, P., 1996. A constitutive thermomechanical model for satu-
rated clays. Eng. Geol. 41, 145 169.
Robinet, J., Pasquiou, A., Jullien, A., Belanteur, N., Plas, F., 1997. Expériences de laboratoire sur le com-
portement thermohydromécanique de matériaux argileux remaniés gonflants et non gonflants. Rev.
Fr. Géotech. 81, 53 80.
Romero, E., Villar, M., Lloret, A., 2005. Thermohydromechanical behaviour of two heavily overconsoli-
dated clays. Eng. Geol. 81 (3), 255 268.
Roscoe, K.H., Burland, J.B., 1968. On the generalised stress strain behaviour of ‘wet’ clay. In: Heyman,
J., Leckie, F.A. (Eds.), Engineering Plasticity. Cambridge University Press, Cambridge, pp. 535 609.
Rotta Loria, A.F., 2019. Performance-based design of energy pile foundations. DFI J. 12 (2), 94 107.
Rotta Loria, A.F., Laloui, L., 2017. Thermally induced group effects among energy piles. Geotechnique
67 (5), 374 393.
Saix, C., Devillers, P., El Youssoufi, M., 2000. Eléments de couplage thermomécanique dans la consoli-
dation de sols non saturés. Can. Geotech. J. 37 (2), 308 317.
Schofield, A., Wroth, P., 1968. Critical State Soil Mechanics. McGraw-Hill, London.
Shakir, R., Zhu, J., 2009. Behavior of compacted clay concrete interface. Front. Archit. Civ. Eng.
China 3 (1), 85 92.
Sitharam, T.G., 2003. Discrete element modelling of cyclic behaviour of granular materials. Geotech.
Geol. Eng. 21 (4), 297 329.
Sittidumrong, J., Jotisankasa, A., Chantawarangul, K., 2019. Effect of thermal cycles on volumetric
behaviour of Bangkok sand. Geomech. Energy Environ. 100127. https://doi.org/10.1016/j.
gete.2019.100127.
Skempton, A., 1960. Significance of Terzaghi’s concept of effective stress. From Theory to Practice in
Soil Mechanics. Wiley.
Skempton, A., 1961. Effective stress in soils, concrete and rocks. In: Proceedings of Conference on Pore
Pressure and Suction in Soils, London, pp. 4 16.
Sultan, N., Delage, P., Cui, Y., 2002. Temperature effects on the volume change behaviour of Boom
clay. Eng. Geol. 64 (2 3), 135 145.
Tabucanon, J.T., Airey, D.W., Poulos, H.G., 1995. Pile skin friction in sands from constant normal stiff-
ness tests. Geotech. Test. J. 18 (3), 350 364.
Tan, W., Lee, C., Sivadass, T., 2008. Behaviour of clay steel interfaces. In: Proceedings of the
International Conference on Construction and Building Technology, ICCBT, pp. 11 20.