Page 284 - Analysis and Design of Energy Geostructures
P. 284
Thermohydromechanical behaviour of soils and soil structure interfaces 259
ASTM D2487, 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil
Classification System). ASTM international.
Baldi, G., Hueckel, T., Pellegrini, R., 1988. Thermal volume changes of the mineral water system in
low-porosity clay soils. Can. Geotech. J. 25 (4), 807 825.
Baldi, G., Hueckel, T., Peano, A. & Pellegrini, R. (1991) Developments in modelling of thermohydro-
geomechanical behaviour of Boom clay and clay-based buffer materials (vol 2). Commission of the
European Communities.
Bolzon, G., Schrefler, B.A., 2005. Thermal effects in partially saturated soils: a constitutive model. Int. J.
Numer. Anal. Methods Geomech. 29 (9), 861 877.
Boudali, M., Leroueil, S., Srinivasa Murthy, B.R., 1994. Viscous behaviour of natural clays In:
Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering,
vol. 1, New Delhi, India, pp. 411 416.
Boulon, M., Foray, P., 1986. Physical and numerical simulation of lateral shaft friction along offshore piles
in sand. In: Proceedings of the 3rd International Conference on Numerical methods in Offshore
Piling, Nantes, France, pp. 127 147.
Bourne-Webb, P., Burlon, S., Javed, S., Kürten, S., Loveridge, F., 2016. Analysis and design methods for
energy geostructures. Renew. Sustain. Energy Rev. 65, 402 419.
Brumund, W., Leonards, G., 1973. Experimental study of static and dynamic friction between sand and
typical constuction materials. J. Test. Eval. 1 (2), 162 165.
Burghignoli, A., Desideri, A., Miliziano, S., 2000. A laboratory study on the thermomechanical behaviour
of clayey soils. Can. Geotech. J. 37 (4), 764 780.
Burland, J.B., 1973. Shaft friction of piles in clay - a simple fundamental approach. Ground Eng. 6 (3),
30 42.
Campanella, R.G., Mitchell, J.K., 1968. Influence of temperature variations on soil behavior. J. Soil
Mech. Found. Div. 94 (SM3), 709 734.
Cekerevac, C., 2003. Thermal Effects on the Mechanical Behaviour of Saturated Clays: An Experimental
and Numerical Study. EPFL Lausanne.
Cekerevac, C., Laloui, L., 2004. Experimental study of thermal effects on the mechanical behaviour of a
clay. Int. J. Numer. Anal. Methods Geomech. 28 (3), 209 228.
Chapman, D.L., 1913. LI. A contribution to the theory of electrocapillarity. Philos. Mag. Ser. 6 25 (148),
475 481.
Chen, K., Cole, J., Conger, C., Draskovic, J., Lohr, M., Klein, K., et al., 2006. Granular materials: pack-
ing grains by thermal cycling. Nature 442 (7100), 257.
Chen, K., Harris, A., Draskovic, J., Schiffer, P., 2009. Granular fragility under thermal cycles. Granul.
Matter 11, 237 242.
Coccia, C.J.R., McCartney, J.S., 2016a. Thermal volume change of poorly draining soils I: critical assess-
ment of volume change mechanisms. Comput. Geotech. 80, 26 40.
Coccia, C.J.R., McCartney, J.S., 2016b. Thermal volume change of poorly draining soils II: model devel-
opment and experimental validation. Comput. Geotech. 80, 16 25.
Cui, Y.J., Sultan, N., Delage, P., 2000. A thermomechanical model for saturated clays. Can. Geotech. J.
37 (3), 607 620.
De Boer, R., Ehlers, W., 1990. The development of the concept of effective stresses. Acta Mech. 83
(1 2), 77 92.
De Jong, J.T., Randolph, M., White, D.J., 2003. Interface load transfer degradation during cyclic loading:
a microscale investigation. Soil Found. 43 (4), 81 93.
De Jong, J.T., White, D.J., Randolph, M., 2006. Microscale observation and modelling of soil structure
interface behaviour using particle image velocimetry. Soil Found. 46 (1), 15 28.
Delage, P., Sultan, N., Cui, Y.J., 2000. In the thermal consolidation of Boom clay. Can. Geotech. J. 37,
343 354.
Del Olmo, C., Fioravante, V., Gera, F., Hueckel, T., Mayor, J.C., Pellegrini, R., 1996.
Thermomechanical properties of deep argillaceous formations. Eng. Geol. 41 (1-4), 87 102.
Demars, K.R., Charles, R.D., 1982. Soil volume changes induced by temperature cycling. Can. Geotech.
J. 19 (2), 188 194.