Page 150 - Analytical Electrochemistry 2d Ed - Jospeh Wang
P. 150

4-5  WORKING ELECTRODES                                         135

            smaller dimensions are preferred. Chronoamperometric experiments, such as the one
            shown in Figure 4-29, can be used to estimate the transition between these time
            regimes, and the fraction of the conductive surface in accordance with the theoretical
            model (93). In addition to their large collective current, enhanced signal-to-noise
            ratios, and ¯ow-rate independence (in the ¯ow detection), composite electrodes hold
            great promise for incorporating appropriate modi®ers within the bulk of the
            composite matrix.
              Closely spaced band electrodes (pairs or triples), with each electrode within the
            diffusion layer of the other, can be used for studying reactions in a manner analogous
            to ring-disk generation±collection and redox recycling experiments (94,95). Unlike
            with rotating ring-disk electrodes, the product of the reaction at the collector
            electrode can diffuse back across the narrow gap to the generator electrode to
            give higher collection ef®ciencies (and hence sensitivity). A typical generation±
            collection experiment at such an array is illustrated in Figure 4-30. The covering of
            such closely spaced microelectrodes with conducting polymers can form the basis
            for novel microelectronic (transistor-like) sensing devices (see Chapter 6). The
            properties and applications of interdigitated arrays of microband electrodes have
            been reviewed (96).




            REFERENCES

             1. T.P. DeAngelis, R.E. Bond, E.E. Brooks, and W.R. Heineman. Anal. Chem., 49, 1792
               (1977).
             2. R. Clark and A.G. Ewing. Anal. Chem., 70, 1119 (1998).
             3. C.K. Mann, in A.J. Bard, Ed., Electroanalytical Chemistry, Vol. 3, p. 57, Marcel Dekker,
               New York, 1969.
             4. G.G. Wallace, Trends Anal. Chem., 4, 145 (1985).
             5. A. Newman, Anal. Chem., 69, 369A (1997).
             6. T. Matsue, A. Aoki, E. Ando, and I. Uchida. Anal. Chem., 62, 409 (1990).
             7. A.M. Bond, Modern Polarographic Methods in Analytical Chemistry, Marcel Dekker, New
               York, 1980.
             8. P. He, J. Avery, and L.R. Faulkner, Anal. Chem., 54, 1314 (1982).
             9. A.M. Bond, D. Luscombe, S.N. Tan, and F.L Walter, Electroanalysis, 2, 195 (1990).
            10. J. Wang, Analyst, 119, 763 (1994).
            11. K.A. Erickson and P. Wilding, Clin. Chem., 39, 283 (1993).
            12. W. Kemula, and K. Kublik, Anal. Chim. Acta, 18, 104 (1958).
            13. W. Peterson, Am. Lab., 12, 69 (1979).
            14. G. Macchi, J. Electroanal. Chem., 9, 290 (1965).
            15. Z. Kowalski, K. Wang, R. Osteryoung, and J. Osteryoung. Anal. Chem., 59, 2216 (1987).
            16. T.M. Florence, J. Electroanal. Chem., 27, 273 (1970).
            17. R.N. Adams, Electrochemistry at Solid Electrodes, Marcel Dekker, New York, 1969.
            18. R.C. Engstrom, Anal. Chem., 54, 2310 (1982).
            19. W.J Albery and M. Hitchman, Ring-Disk Electrodes, Clarendon Press, Oxford, 1971.
   145   146   147   148   149   150   151   152   153   154   155