Page 163 -
P. 163

Gas Compressors                                               131


        where
           Q go = volumetric flow rate of gas in the standard condition, scf/min
                 or scm/min

        Since this equation still involves in situ pressure P, it has to be combined
        with Eq. (6.18) to solve the minimum required gas flow rate Q go .



           Illustrative Example 6.1
                                                     5
           A well is cased from the surface to 7,000 ft with API 8 / 8 -in-diameter, 28-lb/ft
                                                           7
           nominal casing. It is to be drilled ahead to 10,000 ft with a 7 / 8 -in-diameter
           rotary drill bit, using air as a circulating fluid at an ROP of 60 ft/hr and a
                                                             3
           rotary speed of 50 rpm. The drill string is made up of 500 ft of 6 / 4 -in OD by
                                            1
           13
           2 / 16 -in ID drill collars and 9,500 ft of API 4 / 2 -in-diameter, 16.60-lb/ft nominal
           EU-S135, NC 50 drill pipe. The bottomhole temperature is expected to be
             o
           160 F. We assume in this example that the annular pressure at the collar
           shoulder is 85 psia. Calculate the minimum required gas injection rate when
           the bit reaches the total depth (TD), using the minimum velocity criterion.
           Solution
           The maximum particle size can be estimated based on the maximum penetra-
           tion depth per bit revolution:
                            D s ≈  ð60Þ  = 0:02 ft ½0:006 mŠ
                                ð60Þð50Þ
           Assuming a spherical sandstone particle has a specific gravity of 2.6, the term-
           inal settling velocity can be estimated as
                      s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                   v sl =  ð4Þð32:2Þð0:02Þ½ð62:4Þð2:6Þ − 0:37Š  1:0
                                                  1 +
                               ð3Þð0:37Þð0:85Þ        ð0:02Þð12Þ
                                                     ð7:875 − 4:5Þ
                     = 20:96 ft/s½6:39 m/sŠ
           The required cuttings transport velocity can be estimated as
                                          2
                          v tr =    πð7:875Þ       60
                                    π     2   2  i  3,600
                                   h
                              4ð0:04Þ  ð7:875 − 4:5 Þ
                                    4
                            = 0:62 ft/s½0:19 m/sŠ
           The gas velocity required to transport the solid particles can be calculated as

                          v g = 20:96 + 0:62 = 21:58 ft/s ½6:58 m/sŠ
                                                              (Continued )
   158   159   160   161   162   163   164   165   166   167   168