Page 57 -
P. 57

34                                            Part I Liquid Drilling Systems




          Illustrative Example 2.4
          A 10.5-ppg Herschel-Bulkley fluid with a consistency index of 20 cp equivalent, a
                                                         2
          flow behavior index of 0.8, and a yield stress of 5 lb/100 ft is circulating at
          250 gpm in an 8¾-in-diameter wellbore. Determine the flow regime inside a
          4½-in OD, 16.60-lb/ft drill pipe (3.826-in ID) and in the drill pipe/hole annulus.
          Solution
          Inside the drill pipe:
               v =    250    = 6:98 ft/s
                           2
                  2:448ð3:826Þ

              C c = 1 −  1                 5             = 0:7513
                      2 × 0:8 + 1      " ð3 × 0:8 + 1Þ0:557 # 0:8
                               5 + 0:04177
                                                    3
                                        0:8 × πð0:319/2Þ
                                                        0:8
                            2                ð2 − 0:8Þ 0:319  3

                                10:5 × 7:48 × 6:98
             N Re =  2ð3 × 0:8 + 1Þ 6               2      5 = 11,975
                                                            7
                      0:8   4     0:319    0:8     3 × 0:8 + 1  0:8
                             5          + 0:04177
                               2 × 6:98         0:8 × 0:7513
          The critical Reynolds number N Rec inside the drill pipe is calculated as follows:
                                logð0:8Þ + 3:93
                            y =            = 0:0767
                                    50
                            z =  1:75 − logð0:8Þ  = 0:2638
                                     7
                                              1

                          N Rec =  4ð3 × 0:8 + 1Þ 1 − 0:2638  = 1,537
                                 0:8 × 0:0767

          Since N Re > 1,537, turbulent flow exists inside the drill pipe.
             In the annulus:
            v =      250      = 1:81 ft/s
                       2   2
               2:448ð8:75 − 4:5 Þ

           C = 1 −  1                           5

            a
                  0:8 + 1       (                                     ) 0:8
                        5 + 0:04177         2 × 0:557ð2 × 0:8 + 1Þ
                                                            2        2
                                 0:8 × π½ð0:729/2Þ − ð0:375/2ފ½ð0:729/2Þ − ð0:375/2Þ Š
           C = 0:552

            a
                        2                                  3
                                        ð2 − 0:8Þ 0:729 − 0:375   0:8

                            10:5 × 7:48 × 1:81
                        6                        2         7
          N Re =  4ð2 × 0:8 + 1 Þ 6                        7= 1,506
                                                           7
                  0:8   6    0:729 − 0:375   0:8           0:8 5
                        4
                         5             + 0:04177  2ð2 × 0:8 + 1Þ
                             2 × 1:81           0:8 × 0:552
   52   53   54   55   56   57   58   59   60   61   62