Page 24 - Applied Numerical Methods Using MATLAB
P. 24

BASIC OPERATIONS OF MATLAB  13
            Table 1.3 (continued)
            find        Index of element(s)   roots            Roots of polynomial

            flops(0)    Reset the flops count to  tic           Start a stopwatch timer
                        zero

            flops       Cumulative # of floating  toc           Read the stopwatch
                        point operations                       timer (elapsed time
                        (unavailable in                        from tic)
                        MATLAB 6.x)

            date        Present date          magic            Magic square
                               Reserved Variables with Special Meaning
                        √
            i,j          −1                   pi               π
            eps         Machine epsilon floating  realmax realmin  Largest/smallest
                        point relative accuracy                positive number
            break       Exit while/for loop   Inf, inf         Largest number (∞)

            end         The end of for-loop or  NaN            Not a Number
                        if, while, case statement              (undetermined)
                        or an array index

            nargin      Number of input       nargout          Number of output
                        arguments                              arguments

            varargin    Variable input argument  varargout     Variable output
                        list                                   argument list



            Once we store these functions into the files named ‘f1.m’ and ‘f49.m’ after the
            function names, respectively, we can call and use them as needed inside another
            M-file or in the MATLAB Command window.

            >>f1([0 1]) %several values of a scalar function of a scalar variable
               ans = 1.0000  0.1111
            >>f49([0 1]) %a value of a 2-D vector function of a vector variable
               ans = -1.0000  -5.5000
            >>feval(’f1’,[0 1]), feval(’f49’,[0 1]) %equivalently, yields the same
               ans =  1.0000  0.1111
               ans = -1.0000  -5.5000

              (Q5) With the function f1(x) defined as a scalar function of a scalar variable, we enter
                   a vector as its input argument to obtain a seemingly vector-valued output. What’s
                   going on?
   19   20   21   22   23   24   25   26   27   28   29