Page 40 - Applied Numerical Methods Using MATLAB
P. 40

COMPUTER ERRORS VERSUS HUMAN MISTAKES  29
                                                    52
                  ={1, 1 + 2 −52 , 1 + 2 × 2 −52 ,..., 1 + (2 − 1) × 2 −52 }
                  ={1, 1 + 2 −52 , 1 + 2 × 2 −52 ,...,(2 − 2 −52 )}
                                              52
                  ={1, 1 +  , 1 + 2 , ... , 1 + (2 − 1)  = 2 −  } (  = 2 −52 ) (1.2.2)
              The set of numbers S, E,and M, each represented by the sign bit S, the
            exponent field Exp and the mantissa field M, represents a number as a whole

                                        f =±M · 2 E                      (1.2.3)
            We classify the range of numbers depending on the value (E) of the exponent
            and denote it as
                                E
                        R E = [2 , 2 E+1 )  with − 1022 ≤ E ≤+1023       (1.2.4)

            In each range, the least unit—that is, the value of LSB (least significant bit) or
            the difference between two consecutive numbers represented by the mantissa of
            52 bits—is
                                         E
                                                    E
                                E =   × 2 = 2 −52  × 2 = 2 E−52          (1.2.5)
              Let us take a closer look at the bitwise representation of numbers belonging
            to each range.

              0. 0(zero)
                           63  62      52  51                 0
                           S   000 . . 0000  0000 0000 . . .  0000 0000
              1. Un-normalized Range (with the value of hidden bit b h = 0)

                 R −1023 = [2 −1074 , 2 −1022 ) with Exp = 0,E = Exp − 1023 + 1 =−1022
                                                 (       )   (       )



                                                     (      )
                                                  (             )  (       )
                 Value of LSB:   −1023 =   −1022 = 2 −1022−52  = 2 −1074
              2. The Smallest Normalized Range (with the value of hidden bit b h = 1)
                 R −1022 = [2 −1022 , 2 −1021 ) with Exp = 1,E = Exp − 1023 =−1022
                                                        E
                S 000 . . .  0001  0000 0000  . . . .  0000 0000 (1 + 0) × 2  = (1 + 0) × 2 −1022
                S 000 . . .  0001  0000 0000  . . . .  0000 0001  (1 + 2 −52 ) × 2 −1022
                . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
                S 000 . . .  0001  1111 1111  . . . .  1111 1111  {(1 + (2 52  − 1) 2 −52 ) = (2 − 2 −52 )} × 2 −1022

                 Value of LSB:   −1022 = 2 −1022−52  = 2 −1074
              3. Basic Normalized Range (with the value of hidden bit b h = 1)
   35   36   37   38   39   40   41   42   43   44   45