Page 44 - Applied Numerical Methods Using MATLAB
P. 44

COMPUTER ERRORS VERSUS HUMAN MISTAKES  33
            >> nm122
            At x=           1, f1(x)=0.414213562373095150, f2(x)=0.414213562373095090
            At x=           10, f1(x)=0.488088481701514750, f2(x)=0.488088481701515480
            At x=          100, f1(x)=0.498756211208899460, f2(x)=0.498756211208902730
            At x=         1000, f1(x)=0.499875062461021870, f2(x)=0.499875062460964860
            At x=        10000, f1(x)=0.499987500624854420, f2(x)=0.499987500624960890
            At x=       100000, f1(x)=0.499998750005928860, f2(x)=0.499998750006249940
            At x=      1000000, f1(x)=0.499999875046341910, f2(x)=0.499999875000062490
            At x=      10000000, f1(x)=0.499999987401150920, f2(x)=0.499999987500000580
            At x=     100000000, f1(x)=0.500000005558831620, f2(x)=0.499999998749999950
            At x=    1000000000, f1(x)=0.500000077997506340, f2(x)=0.499999999874999990
            At x=   10000000000, f1(x)=0.499999441672116520, f2(x)=0.499999999987500050
            At x=  100000000000, f1(x)=0.500004449631168080, f2(x)=0.499999999998750000
            At x=  1000000000000, f1(x)=0.500003807246685030, f2(x)=0.499999999999874990
            At x=  10000000000000, f1(x)=0.499194546973835970, f2(x)=0.499999999999987510
            At x= 100000000000000, f1(x)=0.502914190292358400, f2(x)=0.499999999999998720
            sqrt(x+1) = 31622776.6016838100000, sqrt(x) = 31622776.6016837920000
             diff=0.00000001862645149230957, sum=63245553.20336760600000000000000

            1.2.3  Absolute/Relative Computing Errors
            The absolute/relative error of an approximate value x to the true value X of a
            real-valued variable is defined as follows:
                            ε x = X(true value) − x(approximate value)   (1.2.7)
                                      X − x
                                 ε x
                            ρ x =   =                                    (1.2.8)
                                 X      X
              If the least significant digit (LSD) is the dth digit after the decimal point, then
            the magnitude of the absolute error is not greater than half the value of LSD.
                                                  1
                                   |ε x |=|X − x|≤ 10 −d                 (1.2.9)
                                                  2
              If the number of significant digits is s, then the magnitude of the relative error
            is not greater than half the relative value of LSD over MSD (most significant
            digit).
                                      |ε x |  |X − x|  1  −s
                                |ρ x |=   =        ≤   10               (1.2.10)
                                      |X|     |X|     2
            1.2.4  Error Propagation
            In this section we will see how the errors of two numbers, x and y, are propagated
            with the four arithmetic operations. Error propagation means that the errors in the
            input numbers of a process or an operation cause the errors in the output numbers.
              Let their absolute errors be ε x and ε y , respectively. Then the magnitudes of
            the absolute/relative errors in the sum and difference are

                   ε x±y = (X ± Y) − (x ± y) = (X − x) ± (Y − y) = ε x ± ε y
                         |ε x±y |≤|ε x |+ |ε y |                        (1.2.11)
                          |ε x±y |  |X||ε x /X|+ |Y||ε y /Y|  |X||ρ x |+ |Y||ρ y |
                 |ρ x±y |=       ≤                     =                (1.2.12)
                         |X ± Y|         |X ± Y|             |X ± Y|
   39   40   41   42   43   44   45   46   47   48   49