Page 495 - Applied Numerical Methods Using MATLAB
P. 495

484    SYMBOLIC COMPUTATION
            >>symsabxnt
            >>diff(x^n))
              ans = x^n*n/x
            >>simplify(ans)
              ans = x^(n - 1)*n
            >>f = exp(a*x)*cos(b*t)
            >>diff(f) %equivalently diff(f,x)
                                         d      d
              ans = a*exp(a*x)*cos(b*t) %  f =    e ax  cos (bt) = ae ax  cos (bt)
                                         dx     dx
            >>diff(f,t)
                                          d     d
              ans = -exp(a*x)*sin(b*t)*b %  f =   e ax  cos (bt) =− be ax  sin (bt)
                                          dt    dt
            >>diff(f,2) %equivalently diff(f,x,2)
                                           d  2
                                                   2 ax
              ans = a^2*exp(a*x)*cos(b*t) %  f = a e   cos (bt)
                                           dx 2
            >>diff(f,t,2)
                                            d  2
              ans = -exp(a*x)*cos(b*t)*b^2 %  f =−e  ax  cos (bt)b 2
                                           dt 2
            >>g = [cos(x)*cos(t) cos(x)*sin(t)];
            >>jacob g = jacobian(g,[x t])
              jacob g = [ -sin(x)*cos(t), -cos(x)*sin(t)]
                        [ -sin(x)*sin(t),  cos(x)*cos(t)]

           Note that the jacobian() function finds the jacobian defined by (C.9)—that is,
                                                 T
           the derivative of a vector function [g 1  g 2 ] with respect to a vector variable
                 T
           [x  t] —as

                                        ∂g 1 /∂x  ∂g 1 /∂t
                                  J =                                     (G.1)
                                        ∂g 2 /∂x  ∂g 2 /∂t
           G.2.4  Integration

           The int() function returns the indefinite/definite integral (anti-derivative) of a
           function or an expression with respect to the variable given as its second input
           argument or its free variable which might be determined by using the findsym
           function.

           >>symsaxyt
           >>int(x^n)
                                           1
                                    n          n + 1
              ans = x^(n + 1)/(n + 1) % x dx =  x
                                         n + 1
           >>int(1/(1 + x^2))
                             1

              ans = atan(x) %   dx = tan − 1 x
                           1 + x  2
           >>int(a^x) %equivalently diff(f,x,2)
                                        1
                                  x        x
              ans  = 1/log(a)*a^x  % a dx =  a
                                       log a
           >>int(sin(a*t),0,pi) %equivalently int(sin(a*t),t,0,pi)
                                                1        π    1         1
                                    π
              ans = -cos(pi*a)/a + 1/a %  sin (at) dt =−  cos (at)    =−  cos (aπ) +
                                   0            a        0    a         a
   490   491   492   493   494   495   496   497   498   499   500