Page 514 - Applied Numerical Methods Using MATLAB
P. 514
INDEX FOR MATLAB
ROUTINES
(cf) A/C/E/P/S/T stand for Appendix/Chapter/Example/Problems/Section/Table, respectively.
(cf) The routines whose name starts with a capital letter are constructed in this book.
(cf) A program named “nmijk.m” can be found in Section i.j-k.
Name Place Description
abmc S6.4-1 Predictor/Corrector coefficients in Adams-Bashforth-
Moulton ODE solver
adapt Smpsn() S5.8 ntegration by the adaptive Simpson method
−
adc1() P1.10 AD conversion
adc2() P1.10 AD conversion
axis() S1.1-4 specify axis limits or appearance
backslash(\) P1.14 left matrix division
backsubst() S2.4-1 backward substitution for lower-triangular matrix
equation
bar()/barh() S1.1-4 a vertical/horizontal bar chart
bisct() S4.2 bisection method to solve a nonlinear equation
break S1.1-9 terminate execution of a for loop or while loop
bvp2 eig() P6.11 solve an eigenvalue BVP2
−
bvp2 fdf() S6.6-2 FDM (Finite difference method) for a BVP
−
bvp2 fdfp() P6.6 FDM for a BVP with initial derivative fixed
−
bvp2 shoot() S6.6-1 Shooting method for a BVP (boundary value problem)
−
bvp2 shootp() P6.6 Shooting method for a BVP with initial derivative fixed
−
bvp2 fdf() S6.6-2 FDM (Finite difference method) for a BVP
−
bvp2 fdfp() P6.6 FDM for a BVP with initial derivative fixed
−
bvp2m shootp() P6.7 Shooting method for BVP with mixed boundary
−
condition I
bvp2m fdfp() P6.7 FDM for a BVP with mixed boundary condition I
−
bvp2mm shootp() P6.8 Shooting method for BVP with mixed boundary
−
condition II
bvp2mm fdfp() P6.8 FDM for a BVP with mixed boundary condition II
−
bvp2 fdfp() P6.6 Finite difference method for a BVP with initial
−
derivative
bvp4c() S6.6-2, fixed
P6.7∼10 BVP solver
ceil() S1.1-5 (T1.3) round toward infinity
cheby() S3.3 Chebyshev polynomial approximation
chol() S2.4-2 Cholesky factorization
Applied Numerical Methods Using MATLAB , by Yang, Cao, Chung, and Morris
Copyright 2005 John Wiley & Sons, Inc., ISBN 0-471-69833-4
503

