Page 514 - Applied Numerical Methods Using MATLAB
P. 514

INDEX FOR MATLAB

                                                     ROUTINES









            (cf) A/C/E/P/S/T stand for Appendix/Chapter/Example/Problems/Section/Table, respectively.
            (cf) The routines whose name starts with a capital letter are constructed in this book.
            (cf) A program named “nmijk.m” can be found in Section i.j-k.
            Name             Place                     Description
            abmc             S6.4-1     Predictor/Corrector coefficients in Adams-Bashforth-
                                          Moulton ODE solver
            adapt Smpsn()    S5.8       ntegration by the adaptive Simpson method
                −
            adc1()           P1.10      AD conversion
            adc2()           P1.10      AD conversion
            axis()           S1.1-4     specify axis limits or appearance
            backslash(\)     P1.14      left matrix division
            backsubst()      S2.4-1     backward substitution for lower-triangular matrix
                                          equation
            bar()/barh()     S1.1-4     a vertical/horizontal bar chart
            bisct()          S4.2       bisection method to solve a nonlinear equation
            break            S1.1-9     terminate execution of a for loop or while loop
            bvp2 eig()       P6.11      solve an eigenvalue BVP2
                −
            bvp2 fdf()       S6.6-2     FDM (Finite difference method) for a BVP
                −
            bvp2 fdfp()      P6.6       FDM for a BVP with initial derivative fixed
                −
            bvp2 shoot()     S6.6-1     Shooting method for a BVP (boundary value problem)
                −
            bvp2 shootp()    P6.6       Shooting method for a BVP with initial derivative fixed
                −
            bvp2 fdf()       S6.6-2     FDM (Finite difference method) for a BVP
                −
            bvp2 fdfp()      P6.6       FDM for a BVP with initial derivative fixed
                −
            bvp2m shootp()   P6.7       Shooting method for BVP with mixed boundary
                 −
                                          condition I
            bvp2m fdfp()     P6.7       FDM for a BVP with mixed boundary condition I
                 −
            bvp2mm shootp()  P6.8       Shooting method for BVP with mixed boundary
                  −
                                          condition II
            bvp2mm fdfp()    P6.8       FDM for a BVP with mixed boundary condition II
                  −
            bvp2 fdfp()      P6.6       Finite difference method for a BVP with initial
                −
                                          derivative
            bvp4c()          S6.6-2,    fixed
                             P6.7∼10    BVP solver
            ceil()           S1.1-5 (T1.3) round toward infinity
            cheby()          S3.3       Chebyshev polynomial approximation
            chol()           S2.4-2     Cholesky factorization
                                          
            Applied Numerical Methods Using MATLAB , by Yang, Cao, Chung, and Morris
            Copyright  2005 John Wiley & Sons, Inc., ISBN 0-471-69833-4
                                                                            503
   509   510   511   512   513   514   515   516   517   518   519