Page 519 - Applied Numerical Methods Using MATLAB
P. 519
508 INDEX FOR MATLAB ROUTINES
simple() AG2-3 simplest form of symbolic expression
simplify() AG2-3 simplify symbolic expression
smpsns() S5.6 Integration by Simpson rule
smpsns fxy() S5.10, P5.15 1-D integration of a function f (x, y) along y
−
solve() P3.1, S4.7, symbolic solution of algebraic equations
AG4
sort() S1.1-4 arranges the elements of an array in ascending order
spline() S3.5 cubic spline
sprintf() S1.1-4 make formatted data to a string
stairs() S1.1-4 stair-step plot of zero-hold signal of sampled data
systems
stem() S1.1-4 plot discrete sequence data
subplot() S1.1-4, 1.1-7 divide the current figure into rectangular panes
subs() AG1 substitute
sum() S1.1-7 sum of elements of an array
surface() P6.0 plot a surface-type graph of f (x, y)
surfnorm() P6.0 generate vectors normal to a surface
svd() S2.4-2 singular value decomposition
switch S1.1-9 switch among several cases
syms P3.1, S4.7, declare symbolic variable(s)
AG
sym2poly() S5.3, AG2 extract the coefficients of symbolic polynomial
expression
taylor() S5.3, AG2 Taylor series expansion
text() S1.1-4 add a text at the specified location on the graph
title() S1.1-4 add title to current axes
trid() S6.6-2 solve a tri-diagonal system of linear equations
trimesh() S9.4 plot a triangular-mesh-type graph
trpzds() S5.6 Integration by trapezoidal rule
varargin() S1.3-6 variable length input argument list
view() S1.1-5, P1.4 3-D graph viewpoint specification
vpa() AG evaluate double array by variable precision arithmetic
wave() S9.3-1 central difference method for hyperbolic PDE (wave eq)
wave2() S9.3-2 central difference method for hyperbolic PDE (2-D
wave eq)
while S1.1-9 repeat statements an indefinite number of times
windowing() P3.18 multiply a sequence by the specified window sequence
xlabel()/ylabel() S1.1-4 label the x-axis/y-axis
zeros() S1.1-7 construct an array of zeros
zeroing() P1.15 cross out every (kM-m)th element to zero

