Page 519 - Applied Numerical Methods Using MATLAB
P. 519

508    INDEX FOR MATLAB ROUTINES
            simple()         AG2-3      simplest form of symbolic expression
            simplify()       AG2-3      simplify symbolic expression
            smpsns()         S5.6       Integration by Simpson rule
            smpsns fxy()     S5.10, P5.15  1-D integration of a function f (x, y) along y
                 −
            solve()          P3.1, S4.7,  symbolic solution of algebraic equations
                               AG4
            sort()           S1.1-4     arranges the elements of an array in ascending order
            spline()         S3.5       cubic spline
            sprintf()        S1.1-4     make formatted data to a string
            stairs()         S1.1-4     stair-step plot of zero-hold signal of sampled data
                                         systems
            stem()           S1.1-4     plot discrete sequence data
            subplot()        S1.1-4, 1.1-7  divide the current figure into rectangular panes
            subs()           AG1        substitute
            sum()            S1.1-7     sum of elements of an array
            surface()        P6.0       plot a surface-type graph of f (x, y)
            surfnorm()       P6.0       generate vectors normal to a surface
            svd()            S2.4-2     singular value decomposition
            switch           S1.1-9     switch among several cases
            syms             P3.1, S4.7,  declare symbolic variable(s)
                               AG
            sym2poly()       S5.3, AG2  extract the coefficients of symbolic polynomial
                                         expression
            taylor()         S5.3, AG2  Taylor series expansion
            text()           S1.1-4     add a text at the specified location on the graph
            title()          S1.1-4     add title to current axes
            trid()           S6.6-2     solve a tri-diagonal system of linear equations
            trimesh()        S9.4       plot a triangular-mesh-type graph
            trpzds()         S5.6       Integration by trapezoidal rule
            varargin()       S1.3-6     variable length input argument list
            view()           S1.1-5, P1.4  3-D graph viewpoint specification
            vpa()            AG         evaluate double array by variable precision arithmetic
            wave()           S9.3-1     central difference method for hyperbolic PDE (wave eq)
            wave2()          S9.3-2     central difference method for hyperbolic PDE (2-D
                                         wave eq)
            while            S1.1-9     repeat statements an indefinite number of times
            windowing()      P3.18      multiply a sequence by the specified window sequence
            xlabel()/ylabel()  S1.1-4   label the x-axis/y-axis
            zeros()          S1.1-7     construct an array of zeros
            zeroing()        P1.15      cross out every (kM-m)th element to zero
   514   515   516   517   518   519   520