Page 31 - Applied Petroleum Geomechanics
P. 31

Stresses and strains  21


                        2    3       2                         3      2     3
                          s 11         c 11  c 12  c 13  c 14  c 15  c 16  ε 11
                                       c
                        6    7       6                         7      6  ε  7
                                     6 12  c 22  c 23  c 24  c 25
                        6  s 22 7                            c 26 7   6 22 7
                        6    7       6                         7      6     7
                        6 s 33  7    6 c 13  c 23  c 33  c 34  c 35  c 36  7  6 ε 33  7
              where s ¼  6   7 , C ¼  6                        7 , ε ¼  6   7 ,
                        6    7       6 c                       7      6     7
                                     6 14  c 24  c 34  c 44  c 45  c 46 7  2ε 23 7
                        6                                             6
                          s 23 7
                        6    7       6                         7      6     7
                        4 s 13  5    4 c 15  c 25  c 35  c 45  c 55  c 56  5  4 2ε 13  5
                          s 12         c 16  c 26  c 36  c 46  c 56  c 66  2ε 12
                         2      3
                          a T11
                         6      7
                         6  a T22 7
                         6      7
                         6 a T33  7
                   a T ¼  6     7 ;
                         6      7
                         6  2a T23 7
                         6      7
                         4 2a T13  5
                          2a T12
                 c 11 h C 1111 , c 12 h C 1122 ¼ C 2211 , etc. are the elastic stiffnesses of the
              rock.
                 The inverse of Eq. (1.35) has the following form:
                                      ε ¼ Ss   a T DT                    (1.36)
                        2                          3
                          s 11  s 12  s 13  s 14  s 15  s 16
                          s                        7
                        6 12  s 22  s 23  s 24  s 25  s 26 7
                        6
                        6                          7
                        6 s 13  s 23  s 33  s 34  s 35  s 36  7
              where S ¼  6                         7 ;
                        6 s                        7
                        6 14  s 24  s 34  s 44  s 45  s 46 7
                        6                          7
                        4 s 15  s 25  s 35  s 45  s 55  s 56  5
                          s 16  s 26  s 36  s 46  s 56  s 66
                 s 11 h S 1111 , s 12 h S 1122 ¼ S 2211 , etc. are the elastic compliances of the
                             1
              rock, and S ¼ C .
                 In an anisotropic rock, each matrix of C and S has 21 independent elastic
              components. Therefore, if an anisotropic rock contains no symmetry planes,
              then 21 elastic stiffnesses (C ij ) are required to completely describe the rock
              properties. It is difficult to obtain those stiffnesses. However, for most practical
              cases a simplified model can be adopted, and anisotropic rocks are often
              modeled as orthotropic or transversely isotropic (TI) media in a coordinate
              system attached to their apparent structures or directions of symmetry.
   26   27   28   29   30   31   32   33   34   35   36