Page 34 - Applied Petroleum Geomechanics
P. 34

24    Applied Petroleum Geomechanics


          where G 1 ¼ E 1 /[2(1þn 12 )]; Poisson’s ratios are not symmetric, but satisfy
          n 31 /E 3 ¼ n 13 /E 1 .
             Hooke’s law in the VTI rock can be expressed as follows:
            2     3   2                                                 3
              ε 11       1=E 1    n 12 =E 1   n 31 =E 3  0   0      0
              ε          n 12 =E 1  1=E 1   n 31 =E 3  0     0      0
            6     7   6                                                 7
            6 22 7    6                                                 7
            6     7   6                                                 7
            6 ε 33  7  6  n 13 =E 1   n 13 =E 1  1=E 3  0    0      0   7
            6     7  ¼  6                                               7
                           0        0         0              0      0
            6     7   6                                                 7
            6  2ε 23 7  6                           1=G 3               7
            6     7   6                                                 7
                           0        0         0       0             0
            4 2ε 13  5  4                                  1=G 3        5
              2ε 12        0        0         0       0      0    1=G 12
                        2    3       2    3
                          s 11        a T1
                        6    7       6    7
                        6  s 22 7    6  a T1 7
                        6    7       6    7
                        6 s 33  7    6 a T3  7
                         6   7   DT  6    7
                                      0
                        6    7       6    7
                        6  s 23 7    6    7
                        6    7       6    7
                                     4 0
                        4 s 13  5         5
                                      0
                          s 12
                                                                      (1.41)
             The minimum and maximum horizontal stresses in the VTI rock can be
          derived from Eq. (1.41). In the principal stress state, shear stresses and shear
          strains are zero; therefore, the first two equations in Eq. (1.41) can be
          rewritten as follows:
                                s 1  n 12 s 2  n 31 s 3
                            ε 1 ¼                  a T1 DT            (1.42)
                                E 1   E 1    E 3
                                s 2  n 12 s 1  n 31 s 3
                            ε 2 ¼                  a T1 DT            (1.43)
                                E 1   E 1    E 3
          where s and ε are principal stresses and strains, respectively.
             Solving Eqs. (1.42) and (1.43), the principal stresses (s 1 and s 2 ) can be
          obtained:
                       E 1 n 31      E 1      E 1 n 12  E 1 a T1
               s 1 ¼          s 3 þ    2  ε 1 þ   2  ε 2 þ    DT      (1.44)
                    E 3 ð1   n 12 Þ  1   n   1   n
                                       12         12    1   n 12
                       E 1 n 31      E 1      E 1 n 12  E 1 a T1
               s 2 ¼          s 3 þ    2  ε 2 þ   2  ε 1 þ    DT      (1.45)
                    E 3 ð1   n 12 Þ  1   n 12  1   n 12  1   n 12
          where the principal stresses, Young’s moduli, and Poisson’s ratio are illus-
          trated in Fig. 1.15. If the two horizontal axes (1 and 2) and the vertical
   29   30   31   32   33   34   35   36   37   38   39