Page 89 - Applied Petroleum Geomechanics
P. 89

80    Applied Petroleum Geomechanics


          where Dt s_ma is the shear transit time of the matrix; Dt s is the shear transit
          time of the rock. Therefore, if well log data are available (porosity and
          shear velocity or shear transit time), Biot’s coefficient can be obtained
          from Eq. (2.94).
             Fig. 2.31 displays an example using well log data and Eq. (2.94) to
          compute Biot’s coefficient by assuming Dt s_ma ¼ 100 ms/ft.


          References

          Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir
             characteristics. Trans. AIME 146 (1), 54e62.
          Athy, L.F., 1930. Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 14
             (1), 1e24.
          Bai, M., Elsworth, D., 1994. Modeling of subsidence and stress-dependent hydraulic con-
             ductivity for intact and fractured porous media. Rock Mech. Rock Eng. 27, 209e234.
          Barton, N., 2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy. CRC
             Press.
          Bender, C.V., Bourgoyne, A.T., Suhayda, J.N., 1996. Estimating break-down pressure of
             upper marine sediments using soil boring data. J. Pet. Sci. Eng. 14, 101e114.
          Bourbie, T., Zinszner, B., 1985. Hydraulic and acoustic properties as a function of porosity
             in Fontainebleau sandstone. J. Geophys. Res. 90, 11524e11532.
          Bouteca, M., Sarda, J.-P., 1995. Experimental measurements of thermoporoelastic co-
             efficients. In: Charlez, P. (Ed.), Mechanics of Porous Media. Balkema, Rotterdam.
          Burrus, J., 1998. Overpressure models for clastic rocks, their relation to hydrocarbon
             expulsion: a critical reevaluation. In: Law, B.E., Ulmishek, G.F., Slavin, V.I. (Eds.),
             Abnormal Pressures in Hydrocarbon Environments: AAPG Memoir, vol. 70,
             pp. 35e63.
          Castagna, J.P., Batzle, M.L., Eastwood, R.L., 1985. Relationship between compressional-
             wave and shear-wave velocities in clastic silicate rocks. Geophysics 50 (4), 571e581.
          Cosenza, P., Ghoreychi, M., de Marsily, G., Vasseur, G., Violette, S., 2002. Theoretical
             prediction of poroelastic properties of argillaceous rocks from in situ specific storage
             coefficient. Water Resour. Res. 38, 25-1e25-12.
          Detournay, E., Cheng, A.H.-D., 1993. Fundamentals of poroelasticity. In: Fairhurst, C.
             (Ed.), Comprehensive Rock Engineering: Principles, Practice and Projects, Analysis and
             Design Method, vol. II. Pergamon Press, pp. 113e171 (Chapter 5).
          Domenico, S.N., 1976. Effect of brine-gas-mixture on velocity in an unconsolidated sand
             reservoir. Geophysics 41, 882e894.
          Eberhart-Phillips, D., Han, D.-H., et al., 1989. Empirical relationships among seismic ve-
             locity, effective pressure, porosity and clay content in sandstone. Geophysics 54, 82e89.
          Fabricius, I., Gommesen, L., Krogsbøll, A., Olsen, D., 2008. Chalk porosity and sonic
             velocity versus burial depth: influence of fluid pressure, hydrocarbons, and mineralogy.
             AAPG Bull. 92, 201e223.
          Fatt, I., 1959. The Biot-Willis elastic coefficients for a sandstone. J. Appl. Mech. 26,
             296e297.
          Flemings, P.B., Stump, B.B., et al., 2002. Flow focusing in overpressured sandstones: theory,
             observations and applications. Am. J. Sci. 302, 827e855.
          Gardner, G.H.F., Gardner, L.W., Gregory, A.R., 1974. Formation velocity and density e
             the diagnostic basics for stratigraphic traps. Geophysics 39 (6), 770e780.
   84   85   86   87   88   89   90   91   92   93   94