Page 106 - Applied Probability
P. 106

5. Genetic Identity Coefficients
                              90
                                                           1
                                                 =[1 − 2
                                                           2
                                                        1
                                                          s
                                                           Φ[{G j ,...}{} ...{}]
                                                     +
                                                        2
                                                          s
                                                        1

                                                     +          s ]Φ[{G j ,G k ,...}{} ...{}]
                                                           Φ[{G k ,...}{} ...{}].
                                                        2
                                                        1
                                                               s
                                   In this rule the genes G ,...,G are replaced, respectively, by single
                                                        i      i
                                   genes from both j and k, by a single gene from j only, or by a single
                                                                                            1 s
                                   gene from k only. The three corresponding coefficients 1 − 2( ) ,
                                                                                            2
                                    1 s
                                             1 s
                                   ( ) , and ( ) are determined by binomial sampling with s trials and
                                    2        2
                                                     1
                                   success probability .
                                                     2
                                                                                s
                                                                         1
                              Recurrence Rule 3 Assume that the genes G ,...,G ,G  s+1 ,...,G s+t
                                                                         i      i  i        i
                                   are sampled from i. If the first s genes occur in one block and the
                                   remaining t genes occur in another block, then
                                                          s
                                                   1
                                               Φ[{G ,... ,G ,...}{G s+1 ,... ,G s+t ,...}{} ...{}]
                                                   i
                                                          i
                                                                           i
                                                                  i
                                                1
                                                   s+t
                                           =         Φ[{G j ,...}{G k ,...}{} ...{}]
                                                2
                                                  1
                                                     s+t
                                               +       Φ[{G k ,...}{G j ,...}{} ...{}].
                                                  2
                                   This rule follows because neither the maternal gene nor the paternal
                                   gene of i can be present in both blocks. Again binomial sampling
                                                            1 s+t
                                   determines the coefficients ( )  .
                                                            2
                              Example 5.6.1 Sample Calculations for an Inbred Pedigree
                                Consider the inbred siblings 5 and 6 in Figure 5.1. Let us compute the
                                                                       2
                                                                   2
                                                           1
                                                              1
                                                                                   l
                              kinship coefficient  1 Ψ 8 =Φ({G ,G }{G }{G }), where G denotes the
                                               4           5  6    5   6           k
                              lth sampled gene of person k. Recurrence rule 3 and symmetry imply
                                    1        1     1  1    1   2     1     1  1   1    2
                                     Ψ 8  =   Φ({G ,G }{G }{G })+ Φ({G ,G }{G }{G })
                                                           4
                                                               6
                                                   3
                                                                              6
                                                                                       6
                                                                                  3
                                                      6
                                                                           4
                                    4        4                       4
                                             1     1  1    1   2
                                         =    Φ({G ,G }{G }{G })
                                                   3
                                                           4
                                                               6
                                                      6
                                             2
                                             1     1  2    1   2     1     1  2   1    2
                                         =    Φ({G ,G }{G }{G })+ Φ({G ,G }{G }{G }).
                                                                                  4
                                                               4
                                                                                       3
                                                                           3
                                                   3
                                                      3
                                                                              4
                                                           4
                                             8                       8
                              Recurrence rules 2 and 3, boundary conditions 2 and 3, and symmetry
                                                                      2
                                                                  1
                                                          1
                                                             2
                              permit us to express A =Φ({G ,G }{G }{G })as
                                                                  4
                                                          3
                                                                      4
                                                             3
                                              1     1  1    1   2    1     1    1   2
                                       A =     Φ({G ,G }{G }{G })+ Φ({G }{G }{G })
                                                       2
                                                            4
                                                                                4
                                                    1
                                                                           1
                                                                                    4
                                                                4
                                              2                      4
                                                1
                                                               2
                                                          1
                                                      1
                                              + Φ({G }{G }{G })
                                                          4
                                                               4
                                                      2
                                                4
                                                 1
                                                                2
                                                            1
                                                       1
                                          =0 + Φ({G }{G }{G })
                                                                4
                                                            4
                                                       1
                                                 2
   101   102   103   104   105   106   107   108   109   110   111