Page 111 - Applied Probability
P. 111
ical Structuralism in Population Genetics and Social Theory. (1974)
Ballonoff PA, editor, Dowden, Hutchinson & Ross, Stroudsburg, PA,
pp 155-272
[2] Gillois M (1964) La relation d’identit´eeng´en´etique. Ann Inst Henri
Poincar´eB 2:1–94 5. Genetic Identity Coefficients 95
[3] Harris DL (1964) Genotypic covariances between inbred relatives. Ge-
netics 50:1319–1348
[4] Henderson CR (1976) A simple method for computing the inverse
of the numerator relationship matrix used in prediction of breeding
values. Biometrics 32:69–83
e
[5] Jacquard A (1966) Logique du calcul des coefficients d’identit´ entre
deux individus. Population (Paris) 21:751–776
[6] Jacquard A (1974) The Genetic Structure of Populations. Springer-
Verlag, New York
[7] Karigl G (1981) A recursive algorithm for the calculation of identity
coefficients. Ann Hum Genet 45:299–305
[8] Karigl G (1982) Multiple genetic relationships: joint and conditional
genotype probabilities. Ann Hum Genet 46:83–92
[9] Lange K, Sinsheimer JS (1992) Calculation of genetic identity coeffi-
cients. Ann Hum Genet 56:339–346
[10] Lange K, Westlake J, Spence MA (1976) Extensions to pedigree
analysis. II. Recurrence risk calculation under the polygenic thresh-
old model. Hum Hered 26:337–348
[11] Lange K, Westlake J, Spence MA (1976) Extensions to pedigree analy-
sis. III. Variance components by the scoring method. Ann Hum Genet
39:485–491
[12] Mal´ecot G (1948) Les Math´ematiques de l’H´er´edit´e. Masson et Cie,
Paris
[13] Nadot R, Vaysseix G (1973) Apparentement et identit´e. Algorithme
du calcul des coefficients d’identit´e, Biometrics 29:347–359
[14] Thompson EA (1983) Gene extinction and allelic origins in complex
genealogies. Proc R Soc London B 219:241–251
[15] Thompson EA (1986) Pedigree Analysis in Human Genetics. Johns
Hopkins University Press, Baltimore