Page 326 - Applied Probability
P. 326

12. Continuing Problem 11, show that Γ(1 − s) is an analytic function
                                   of the complex variable s for |s| sufficiently small and that the con-
                                   vergence in equation (14.9) is uniform. Consequently, the moments
                                   of λM n − ln n converge to the moments of the extreme value density
                                      −u
                                         −u
                                    −e
                                            . Prove that this density has mean and variance
                                   e
                                         e
                                                     d            14. Poisson Approximation  315
                                                       ln Γ(1 − s)| s=0  = γ
                                                     ds
                                                                          ∞
                                                    d 2                  	   1
                                                       ln Γ(1 − s)| s=0  =    2
                                                      2
                                                    ds                       k
                                                                         k=1
                                                                          π 2
                                                                      =     ,
                                                                          6
                                   where γ is Euler’s constant. (Hint: Quote whatever facts you need
                                   about the log gamma function ln Γ(t) [12].)
                              14.9    References
                               [1] Arratia R, Goldstein L, Gordon L (1989) Two moments suffice for
                                   Poisson approximations: the Chen-Stein method. Ann Prob 17:9–25
                               [2] Arratia R, Goldstein L, Gordon L (1990) Poisson approximation and
                                   the Chen-Stein method. Stat Sci 5:403–434.
                               [3] Arratia R, Gordon L, Waterman MS (1986) An extreme value theory
                                   for sequence matching. Ann Stat 14:971–993
                               [4] Arratia R, Waterman MS (1985) Critical phenomena in sequence
                                   matching. Ann Prob 13:1236–1249
                               [5] Barbour AD, Holst L, Janson S (1992) Poisson Approximation. Oxford
                                   University Press, Oxford
                               [6] D’Eustachio P, Ruddle FH (1983) Somatic cell genetics and gene fam-
                                   ilies. Science 220:919–924
                               [7] Erd¨os P, R´enyi A (1970) On a new law of large numbers. J Anal Math
                                   22:103–111
                               [8] Flatto L, Konheim AG (1962) The random division of an interval and
                                   the random covering of a circle. SIAM Review 4:211–222

                               [9] Glaz J (1992) Extreme order statistics for a sequence of dependent
                                   random variables. Stochastic Inequalities, Shaked M, Tong YL, editors,
                                   IMS Lecture Notes – Monograph Series, Vol 22, Hayward, CA, pp 100–
                                   115
   321   322   323   324   325   326   327   328   329   330   331