Page 329 - Applied Probability
P. 329

15. Diffusion Processes
                              318
                              rather than “infinitesimal second moment” because the approximation
                                              Var(X t+s − X t | X t = x)
                                                           2
                                           =E[(X t+s − X t ) | X t = x] − [µ(t, x)s + o(s)]
                                                           2
                                           =E[(X t+s − X t ) | X t = x]+ o(s)       2
                              follows directly from approximations (15.1) and (15.2). If the infinitesimal
                              mean and variance do not depend on time t, then the process is time
                                                             2
                              homogeneous.If µ(t, x) = 0 and σ (t, x) = 1, then X t reduces to standard
                              Brownian motion.
                                To begin our nonrigorous, intuitive discussion of diffusion processes, we
                              note that the normality assumption implies
                                                             4          4
                                                                                          √    m
                                                                        m 4
                                           m                 4 X t+s − X t  4  4
                               E(|X t+s − X t |  | X t = x)= E  4   √   4  4 X t = x  σ(t, x) s
                                                             4  σ(t, x) s  4
                                                       = o(s)                             (15.3)
                              for m> 2. This insight is crucial in various arguments involving Taylor
                              series expansions. For instance, it allows us to deduce how X t behaves
                              under a smooth, invertible transformation. If Y t = g(t, X t ) denotes the
                              transformed process, then
                                               ∂          ∂                   1 ∂ 2     2
                                  Y t+s − y  =   g(t, x)s +  g(t, x)(X t+s − x)+  g(t, x)s
                                               ∂t         ∂x                  2 ∂t 2
                                                  ∂ 2                  1 ∂ 2               2
                                              +      g(t, x)s(X t+s − x)+   g(t, x)(X t+s − x)
                                                 ∂t∂x                  2 ∂x 2
                                                                3
                                              + O[(|X t+s − x| + s) ]
                              for X t = x and y = g(t, x). Taking conditional expectations produces
                                                              ∂           ∂
                                      E(Y t+s − Y t | Y t = y)=  g(t, x)s +  g(t, x)µ(t, x)s
                                                              ∂t         ∂x
                                                                1 ∂ 2      2
                                                              +      g(t, x)σ (t, x)s + o(s).
                                                                2 ∂x 2
                              In similar manner,
                                                                         2

                                                                 ∂          2
                                     Var(Y t+s − Y t | Y t = y)=   g(t, x)  σ (t, x)s + o(s).
                                                                ∂x
                              It follows that the transformed diffusion process Y t has infinitesimal
                              mean and variance
                                                ∂         ∂               1 ∂ 2      2
                                   µ Y (t, y)  =  g(t, x)+  g(t, x)µ(t, x)+    g(t, x)σ (t, x)
                                                ∂t        ∂x              2 ∂x 2
                                                          2
                                                 ∂          2

                                    2
                                   σ (t, y)  =     g(t, x)  σ (t, x),
                                    Y
                                                 ∂x
   324   325   326   327   328   329   330   331   332   333   334