Page 263 - Artificial Intelligence for Computational Modeling of the Heart
P. 263

Index  237





                       modeling, 6, 50              motion, 159                L
                       models, 17, 24, 89           QRS duration, 166          Lattice Boltzmann Method
                       parameters, 89                                              (LBM), 79, 196
                       simulations, 139           H                            Learning
                       ventricular, 12, 33        Handcrafted features, 99, 141,  deep, 97, 106, 114, 115, 117,
                     Endocardial                      167                          118, 133–135, 154, 157, 160
                       pressure, 67               Heart                          environment, 107
                       surface, 9, 18, 25, 58, 59, 82, 86  anatomy, 43, 185      models, 115, 171
                       surface normal, 71           beat, 24, 26, 89, 143, 144, 186  problem, 99
                     Endocardium, 5, 9, 14, 25, 48, 49,  chambers, 27, 78, 97, 104, 116  process, 176
                         57–59, 86                  conduction system, 14        strategy, 100
                     Epicardial                     cycle, 36, 93, 206         Left bundle branch block
                       motion, 26                   diseases, 136                  (LBBB), 164, 184, 185
                       potentials, 16, 162          function, 3, 25, 26, 28, 41  Left ventricular (LV), 184, 203
                     Epicardium, 5, 9, 45, 48, 64, 65  isolated, 13              endocardium, 90
                       cardiac, 71                  model, 97, 203             Localized fibrosis, 24
                       surfaces, 49                 motion, 40, 84             Locally linear embedding (LLE),
                     Extracellular potentials, 63, 64,  physiology, 3              139, 140
                         66                         rate, 89, 138, 185, 206    Lumped
                                                    segmentation, 112            models, 22, 24, 32
                                                    tissue, 14                   parameter, 123, 203
                     F
                     Features, anatomical, 117, 118,  ventricles, 26             resistance, 31
                         120, 133, 134            Heart failure (HF), 183, 190   valve, 29
                                                  Hemodynamics, 3, 25, 28, 33, 34,
                     Fiber, 5, 9, 19, 21, 48, 62      41, 43, 78, 79, 92       M
                       direction, 13, 20, 48, 62, 69  atrial, 43               Machine learning (ML), 39, 40,
                       sheets, 19, 21, 48           cardiac, 78, 117               120, 130, 150, 162, 180, 191,
                     Fibrosis, 6, 47, 91            coronary, 125–127, 133, 134,   192, 201, 202
                     Finite difference method (FDM),  154                        models, 120, 125, 134, 135
                         51
                                                    diseases, 26               Magnetic resonance imaging
                     Finite element method (FEM),
                                                    global, 28                     (MRI), 5, 165, 191
                         18, 51, 67, 154, 191
                                                    local, 28                  Magnetic resonance (MR), 97
                     Flow rate, 27, 28, 36, 71, 86, 87,
                                                    modeling, 26, 78           Manifold learning techniques,
                         123, 127, 135, 197–199, 205
                                                    models, 18                     138, 139, 146, 147
                       aortic, 36, 204, 205
                                                    parameters, 92             Marginal space deep learning
                       inlet, 87
                                                    ventricular, 26                (MSDL), 97, 98, 101, 103,
                       outlet, 87
                                                  Holzapfel–Ogden (HO) model,      105
                     Fluid Structure Interaction (FSI),  19–21                 Marginal space learning (MSL),
                         38, 82                                                    45, 97, 98, 101
                     Forward model, 161, 164, 165,  I                          Markov Decision Process
                         167, 171, 173, 175, 176, 181  Inlet                       (MDP), 106, 170
                     Fractional Flow Reserve (FFR),  area, 198, 199            Mechanistic models, 138, 139
                         119                        flow rates, 197             Medical images, 43, 44, 46, 115,
                       invasive, 120, 130, 133, 135  Reynolds number, 197          117, 119, 135, 169, 190, 202
                                                  Intracardiac flow, 43         Mitral
                     G                            Intracardiac pressure, 27      annulus, 45
                     Ground truth                 Invasive coronary angiography  outlet, 83
                       action potential profiles, 150  (ICA), 119                 valve, 4, 29, 33, 38, 39
                       diffusivity coefficients, 168  Ionic models, 10            valve models, 38
                       FFR values, 120, 134       Ischemic weight, 126, 127      vortex, 87
   258   259   260   261   262   263   264   265   266