Page 259 - Artificial Intelligence for Computational Modeling of the Heart
P. 259

232  Bibliography





                    changes within thoracic, coronary, and cerebral  442. J. Tompson, K. Schlachter, P. Sprechmann, K.
                    arteries following early wall remodeling in  Perlin, Accelerating Eulerian fluid simulation with
                    response to distal aortic coarctation,      convolutional networks, arXiv preprint,
                    Biomechanics and Modeling in Mechanobiology  arXiv:1607.03597, 2016.
                    12 (1) (2013) 79–93.                   443. E.Jones,T.Oliphant, P. Peterson,etal.,SciPy:
                433. J.F. LaDisa, C.A. Figueroa, I.E. Vignon-Clementel,  Open Source Scientific Tools for Python, 2001,
                    H.J.Kim,N.Xiao, L.M. Ellwein, F.P. Chan,J.A.  Online; accessed 2019/08/30.
                    Feinstein, C.A. Taylor, Computational simulations  444. S. Chikatamarla, S. Ansumali, I. Karlin, Entropic
                    for aortic coarctation: representative results from  lattice Boltzmann models for hydrodynamics in
                    a sampling of patients, Journal of Biomechanical  three dimensions, Physical Review Letters 97 (1)
                    Engineering 133 (9) (2011) 091008.          (2006) 010201.
                434. D.Gallo,G.DeSantis, F. Negri, D. Tresoldi,R.  445. W. Xian, A. Takayuki, Multi-gpu performance of
                    Ponzini, D. Massai, M.A. Deriu, P. Segers, B.  incompressible flow computation by lattice
                    Verhegghe, G. Rizzo, et al., On the use of in vivo  Boltzmann method on gpu cluster, Parallel
                    measured flow rates as boundary conditions for  Computing 37 (9) (2011) 521–535.
                    image-based hemodynamic models of the human  446. C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux,
                    aorta: implications for indicators of abnormal  Multi-gpu implementation of the lattice
                    flow, Annals of Biomedical Engineering 40 (3)  Boltzmann method, Computers & Mathematics
                    (2012) 729–741.                             with Applications 65 (2) (2013) 252–261.
                435. P.Reymond,Y.Bohraus,F.Perren, F. Lazeyras,N.  447. J. Tölke, Implementation of a lattice Boltzmann
                    Stergiopulos, Validation of a patient-specific  kernel using the compute unified device
                    one-dimensional model of the systemic arterial  architecture developed by nvidia, Computing and
                    tree, American Journal of Physiology. Heart and  Visualization in Science 13 (1) (2010) 29–39.
                    Circulatory Physiology 301 (3) (2011)  448. C. Nita, L.M. Itu, C. Suciu, Gpu accelerated blood
                    H1173–H1182.                                flow computation using the lattice Boltzmann
                                                                method, in: High Performance Extreme
                436. L.Itu,P.Sharma, K. Ralovich,V.Mihalef,R.
                    Ionasec, A. Everett, R. Ringel, A. Kamen, D.  Computing Conference (HPEC), 2013 IEEE, IEEE,
                    Comaniciu, Non-invasive hemodynamic         2013, pp. 1–6.
                    assessment of aortic coarctation: validation with  449. X.Liu,Y.Fan,X.Deng, Effect of spiral flowonthe
                    in vivo measurements, Annals of Biomedical  transport of oxygen in the aorta: a numerical
                    Engineering 41 (4) (2013) 669–681.          study, Annals of Biomedical Engineering 38 (3)
                                                                (2010) 917–926.
                437. L.Goubergrits,E.Riesenkampff, P. Yevtushenko, J.
                                                           450. Y.Huo,M.Svendsen, J.S. Choy,Z.-D. Zhang, G.S.
                    Schaller, U. Kertzscher, F. Berger, T. Kuehne, Is
                                                                Kassab, A validated predictive model of coronary
                    mri-based cfd able to improve clinical treatment  fractional flow reserve, Journal of the Royal Society
                    of coarctations of aorta?, Annals of Biomedical  Interface (2011), rsif20110605.
                    Engineering 43 (1) (2015) 168–176.
                                                           451. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z.
                438. D.F.Young,F.Y.Tsai, Flow characteristics inmodels  Chen,C.Citro,G.S.Corrado,A.Davis,J.Dean,M.
                    of arterial stenoses—i. Steady flow, Journal of  Devin, et al., Tensorflow: large-scale machine
                    Biomechanics 6 (4) (1973) 395–402.          learning on heterogeneous distributed systems,
                439. L. Liang, M. Liu, C. Martin, W. Sun, A deep learning  arXiv preprint, arXiv:1603.04467, 2016.
                    approach to estimate stress distribution: a fast and  452. D.P. Kingma, J. Ba, Adam: a method for stochastic
                    accurate surrogate of finite-element analysis,  optimization, arXiv preprint, arXiv:1412.6980,
                    Journal of the Royal Society Interface 15 (138)  2014.
                    (2018) 20170844.                       453. V. Mihalef, L. Itu, T. Mansi, P. Sharma, Lumped
                440. L.Liang,M.Liu,C.Martin, J.A. Elefteriades,W.  Parameter Whole Body Circulation Modelling,
                    Sun, A machine learning approach to investigate  Springer International Publishing, Cham, 2017.
                    the relationship between shape features and  454. A. Vizitiu, C.I. Nita, A. Puiu, C. Suciu, L.M. Itu,
                    numerically predicted risk of ascending aortic  Privacy-preserving artificial intelligence:
                    aneurysm, Biomechanics and Modeling in      application to precision medicine, in: 41st
                    Mechanobiology 16 (5) (2017) 1519–1533.     International Engineering in Medicine and
                441. O. Hennigh, Lat-net: compressing lattice   Biology Conference, 2019.
                    Boltzmann flow simulations using deep neural  455. D. Mann, D. Zipes, P. Libby, R. Bonow, Braunwald’s
                    networks, arXiv preprint, arXiv:1705.09036, 2017.  Heart Disease e-Book: A Textbook of
   254   255   256   257   258   259   260   261   262   263   264