Page 259 - Artificial Intelligence for Computational Modeling of the Heart
P. 259
232 Bibliography
changes within thoracic, coronary, and cerebral 442. J. Tompson, K. Schlachter, P. Sprechmann, K.
arteries following early wall remodeling in Perlin, Accelerating Eulerian fluid simulation with
response to distal aortic coarctation, convolutional networks, arXiv preprint,
Biomechanics and Modeling in Mechanobiology arXiv:1607.03597, 2016.
12 (1) (2013) 79–93. 443. E.Jones,T.Oliphant, P. Peterson,etal.,SciPy:
433. J.F. LaDisa, C.A. Figueroa, I.E. Vignon-Clementel, Open Source Scientific Tools for Python, 2001,
H.J.Kim,N.Xiao, L.M. Ellwein, F.P. Chan,J.A. Online; accessed 2019/08/30.
Feinstein, C.A. Taylor, Computational simulations 444. S. Chikatamarla, S. Ansumali, I. Karlin, Entropic
for aortic coarctation: representative results from lattice Boltzmann models for hydrodynamics in
a sampling of patients, Journal of Biomechanical three dimensions, Physical Review Letters 97 (1)
Engineering 133 (9) (2011) 091008. (2006) 010201.
434. D.Gallo,G.DeSantis, F. Negri, D. Tresoldi,R. 445. W. Xian, A. Takayuki, Multi-gpu performance of
Ponzini, D. Massai, M.A. Deriu, P. Segers, B. incompressible flow computation by lattice
Verhegghe, G. Rizzo, et al., On the use of in vivo Boltzmann method on gpu cluster, Parallel
measured flow rates as boundary conditions for Computing 37 (9) (2011) 521–535.
image-based hemodynamic models of the human 446. C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux,
aorta: implications for indicators of abnormal Multi-gpu implementation of the lattice
flow, Annals of Biomedical Engineering 40 (3) Boltzmann method, Computers & Mathematics
(2012) 729–741. with Applications 65 (2) (2013) 252–261.
435. P.Reymond,Y.Bohraus,F.Perren, F. Lazeyras,N. 447. J. Tölke, Implementation of a lattice Boltzmann
Stergiopulos, Validation of a patient-specific kernel using the compute unified device
one-dimensional model of the systemic arterial architecture developed by nvidia, Computing and
tree, American Journal of Physiology. Heart and Visualization in Science 13 (1) (2010) 29–39.
Circulatory Physiology 301 (3) (2011) 448. C. Nita, L.M. Itu, C. Suciu, Gpu accelerated blood
H1173–H1182. flow computation using the lattice Boltzmann
method, in: High Performance Extreme
436. L.Itu,P.Sharma, K. Ralovich,V.Mihalef,R.
Ionasec, A. Everett, R. Ringel, A. Kamen, D. Computing Conference (HPEC), 2013 IEEE, IEEE,
Comaniciu, Non-invasive hemodynamic 2013, pp. 1–6.
assessment of aortic coarctation: validation with 449. X.Liu,Y.Fan,X.Deng, Effect of spiral flowonthe
in vivo measurements, Annals of Biomedical transport of oxygen in the aorta: a numerical
Engineering 41 (4) (2013) 669–681. study, Annals of Biomedical Engineering 38 (3)
(2010) 917–926.
437. L.Goubergrits,E.Riesenkampff, P. Yevtushenko, J.
450. Y.Huo,M.Svendsen, J.S. Choy,Z.-D. Zhang, G.S.
Schaller, U. Kertzscher, F. Berger, T. Kuehne, Is
Kassab, A validated predictive model of coronary
mri-based cfd able to improve clinical treatment fractional flow reserve, Journal of the Royal Society
of coarctations of aorta?, Annals of Biomedical Interface (2011), rsif20110605.
Engineering 43 (1) (2015) 168–176.
451. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z.
438. D.F.Young,F.Y.Tsai, Flow characteristics inmodels Chen,C.Citro,G.S.Corrado,A.Davis,J.Dean,M.
of arterial stenoses—i. Steady flow, Journal of Devin, et al., Tensorflow: large-scale machine
Biomechanics 6 (4) (1973) 395–402. learning on heterogeneous distributed systems,
439. L. Liang, M. Liu, C. Martin, W. Sun, A deep learning arXiv preprint, arXiv:1603.04467, 2016.
approach to estimate stress distribution: a fast and 452. D.P. Kingma, J. Ba, Adam: a method for stochastic
accurate surrogate of finite-element analysis, optimization, arXiv preprint, arXiv:1412.6980,
Journal of the Royal Society Interface 15 (138) 2014.
(2018) 20170844. 453. V. Mihalef, L. Itu, T. Mansi, P. Sharma, Lumped
440. L.Liang,M.Liu,C.Martin, J.A. Elefteriades,W. Parameter Whole Body Circulation Modelling,
Sun, A machine learning approach to investigate Springer International Publishing, Cham, 2017.
the relationship between shape features and 454. A. Vizitiu, C.I. Nita, A. Puiu, C. Suciu, L.M. Itu,
numerically predicted risk of ascending aortic Privacy-preserving artificial intelligence:
aneurysm, Biomechanics and Modeling in application to precision medicine, in: 41st
Mechanobiology 16 (5) (2017) 1519–1533. International Engineering in Medicine and
441. O. Hennigh, Lat-net: compressing lattice Biology Conference, 2019.
Boltzmann flow simulations using deep neural 455. D. Mann, D. Zipes, P. Libby, R. Bonow, Braunwald’s
networks, arXiv preprint, arXiv:1705.09036, 2017. Heart Disease e-Book: A Textbook of