Page 255 - Artificial Intelligence for Computational Modeling of the Heart
P. 255

228  Bibliography





                    adenosine-free assessment of functional coronary  atria: a computational platform for studying
                    lesion severity, Circulation: Cardiovascular  clinical atrial fibrillation, Progress in Biophysics
                    Interventions (2012), CIRCINTERVENTIONS–111.  and Molecular Biology 107 (2011) 156–168.
                356. M. Meuwissen, M. Siebes, S.A. Chamuleau, B.L.  365. J. Friedman, T. Hastie, R. Tibshirani, The Elements
                    van Eck-Smit, K.T. Koch, R.J. de Winter, J.G.  of Statistical Learning: Data Mining, Inference,
                    Tijssen, J.A. Spaan, J.J. Piek, Hyperemic stenosis  and Prediction, Springer, New York, 2009.
                    resistance index for evaluation of functional  366. S. Roweis, L. Saul, Nonlinear dimensionality
                    coronary lesion severity, Circulation 106 (4) (2002)  reduction by locally linear embedding, Science
                    441–446.                                    290 (5500) (2000) 2323–2326.
                357. H. Samady, P. Eshtehardi, M.C. McDaniel, J. Suo,  367. J.Friedman, W. Stuetzle,Projectionpursuit
                    S.S. Dhawan, C. Maynard, L.H. Timmins, A.A.  regression, Journal of the American Statistical
                    Quyyumi, D.P. Giddens, Coronary artery wall shear  Association 76 (1981) 817–823.
                    stress is associated with progression and  368. D. Krummen, J. Bayer, J. Ho, G. Ho, M. Smetak, P.
                    transformation of atherosclerotic plaque and  Clopton, N. Trayanova, S. Narayan, Mechanisms of
                    arterial remodeling in patients with coronary  human atrial fibrillation initiation: clinical and
                    artery disease, Circulation (2011),         computational studies of repolarization
                    CIRCULATIONAHA–111.                         restitution and activation latency, Circulation:
                358. N.H. Pijls, B. de Bruyne, K. Peels, P.H. van der  Arrhythmia and Electrophysiology 5 (6) (2012)
                    Voort, H.J. Bonnier, J. Bartunek, J.J. Koolen,  1149–1159.
                    Measurement of fractional flow reserve to assess  369. F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu,
                    the functional severity of coronary-artery  A. Maier, T. Mansi, Deep learning acceleration of
                    stenoses, The New England Journal of Medicine  total Lagrangian explicit dynamics for soft tissue
                    334 (26) (1996) 1703–1708.                  mechanics, Computer Methods in Applied
                359. M. Courtemanche, R. Ramirez, S. Nattel, Ionic  Mechanics and Engineering 358 (2020) 112628.
                    mechanisms underlying human atrial action  370. A. Hanson, H. Ma, Parallel Transport Approach to
                    potential properties: insights from a mathematical  Curve Framing, Indiana University,
                    model, The American Journal of Physiology 275  Techreports-TR425, vol. 11 1995, pp. 3–7.
                    (1998) H301–H321.                      371. D.P. Kingma, J. Ba, Adam: a method for stochastic
                360. E. Sobie, Parameter sensitivity analysis in  optimization, CoRR arXiv:1412.6980, 2014.
                    electrophysiological models using multivariable  372. Raymond W. Ogden, Non-linear elastic
                    regression, Biophysical Journal 96 (4) (2009)  deformations, Courier Corporation, 1997.
                    1264–1274.                             373. F. Chollet, et al., Keras, https://keras.io, 2015.
                361. T. Mansi, B. Georgescu, P. Hunter, A. Kamen, D.  374. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z.
                    Comaniciu, Data-driven reduction of a cardiac  Chen,C.Citro,G.S.Corrado,A.Davis,J.Dean,M.
                    myofilament model, in: Functional Imaging and  Devin, S. Ghemawat, I. Goodfellow, A. Harp, G.
                    Modeling of the Heart, vol. 7945, 2013,     Irving,M.Isard,Y.Jia,R.Jozefowicz, L. Kaiser,M.
                    pp. 232–240.                                Kudlur, J. Levenberg, D. Mané, R. Monga, S.
                362. H. Yang, T. Passerini, T. Mansi, D. Comaniciu,  Moore,D. Murray,C.Olah, M.Schuster,J.Shlens,
                    Data-driven model reduction for fast, high fidelity  B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.
                    atrial electrophysiology computations, in:  Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P.
                    Functional Imaging and Modeling of the Heart -  Warden,M.Wattenberg, M. Wicke, Y. Yu,X.Zheng,
                    8th International Conference, FIMH 2015     TensorFlow: Large-Scale Machine Learning on
                    Maastricht, the Netherlands, June 25-27, 2015.  Heterogeneous Systems, 2015, Software available
                    Proceedings, 2015, pp. 466–474.             from tensorflow.org.
                363. F. Atienza, J. Almendral, J. Moreno, R.  375. Philippe Weinzaepfel, Jerome Revaud, Zaid
                    Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J.  Harchaoui, Cordelia Schmid, DeepFlow: Large
                    Villacastin, E. Torrecilla, A. Sanchez, R.  displacement optical flow with deep matching, in:
                    Ploutz-Snyder, J. Jalife, O. Berenfeld, Activation of  Proceedings of the IEEE International Conference
                    inward rectifier potassium channels accelerates  on Computer Vision, 2013, pp. 1385–1392.
                    atrial fibrillation in humans: evidence for a  376. Mark Alber, Adrian Buganza Tepole, William
                    reentrant mechanism, Circulation 114 (2006)  Cannon, Suvranu De, Salvador Dura-Bernal,
                    2434–2442.                                  Krishna Garikipati, George Karniadakis, William
                364. O. Aslanidi, M. Colman, J. Stott, H. Dobrzynski, M.  W. Lytton, Paris Perdikaris, Linda Petzold, Ellen
                    Boyett, A.Holden,H.Zhang,3dvirtualhuman     Kuhl, Integrating machine learning and multiscale
   250   251   252   253   254   255   256   257   258   259   260