Page 255 - Artificial Intelligence for Computational Modeling of the Heart
P. 255
228 Bibliography
adenosine-free assessment of functional coronary atria: a computational platform for studying
lesion severity, Circulation: Cardiovascular clinical atrial fibrillation, Progress in Biophysics
Interventions (2012), CIRCINTERVENTIONS–111. and Molecular Biology 107 (2011) 156–168.
356. M. Meuwissen, M. Siebes, S.A. Chamuleau, B.L. 365. J. Friedman, T. Hastie, R. Tibshirani, The Elements
van Eck-Smit, K.T. Koch, R.J. de Winter, J.G. of Statistical Learning: Data Mining, Inference,
Tijssen, J.A. Spaan, J.J. Piek, Hyperemic stenosis and Prediction, Springer, New York, 2009.
resistance index for evaluation of functional 366. S. Roweis, L. Saul, Nonlinear dimensionality
coronary lesion severity, Circulation 106 (4) (2002) reduction by locally linear embedding, Science
441–446. 290 (5500) (2000) 2323–2326.
357. H. Samady, P. Eshtehardi, M.C. McDaniel, J. Suo, 367. J.Friedman, W. Stuetzle,Projectionpursuit
S.S. Dhawan, C. Maynard, L.H. Timmins, A.A. regression, Journal of the American Statistical
Quyyumi, D.P. Giddens, Coronary artery wall shear Association 76 (1981) 817–823.
stress is associated with progression and 368. D. Krummen, J. Bayer, J. Ho, G. Ho, M. Smetak, P.
transformation of atherosclerotic plaque and Clopton, N. Trayanova, S. Narayan, Mechanisms of
arterial remodeling in patients with coronary human atrial fibrillation initiation: clinical and
artery disease, Circulation (2011), computational studies of repolarization
CIRCULATIONAHA–111. restitution and activation latency, Circulation:
358. N.H. Pijls, B. de Bruyne, K. Peels, P.H. van der Arrhythmia and Electrophysiology 5 (6) (2012)
Voort, H.J. Bonnier, J. Bartunek, J.J. Koolen, 1149–1159.
Measurement of fractional flow reserve to assess 369. F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu,
the functional severity of coronary-artery A. Maier, T. Mansi, Deep learning acceleration of
stenoses, The New England Journal of Medicine total Lagrangian explicit dynamics for soft tissue
334 (26) (1996) 1703–1708. mechanics, Computer Methods in Applied
359. M. Courtemanche, R. Ramirez, S. Nattel, Ionic Mechanics and Engineering 358 (2020) 112628.
mechanisms underlying human atrial action 370. A. Hanson, H. Ma, Parallel Transport Approach to
potential properties: insights from a mathematical Curve Framing, Indiana University,
model, The American Journal of Physiology 275 Techreports-TR425, vol. 11 1995, pp. 3–7.
(1998) H301–H321. 371. D.P. Kingma, J. Ba, Adam: a method for stochastic
360. E. Sobie, Parameter sensitivity analysis in optimization, CoRR arXiv:1412.6980, 2014.
electrophysiological models using multivariable 372. Raymond W. Ogden, Non-linear elastic
regression, Biophysical Journal 96 (4) (2009) deformations, Courier Corporation, 1997.
1264–1274. 373. F. Chollet, et al., Keras, https://keras.io, 2015.
361. T. Mansi, B. Georgescu, P. Hunter, A. Kamen, D. 374. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z.
Comaniciu, Data-driven reduction of a cardiac Chen,C.Citro,G.S.Corrado,A.Davis,J.Dean,M.
myofilament model, in: Functional Imaging and Devin, S. Ghemawat, I. Goodfellow, A. Harp, G.
Modeling of the Heart, vol. 7945, 2013, Irving,M.Isard,Y.Jia,R.Jozefowicz, L. Kaiser,M.
pp. 232–240. Kudlur, J. Levenberg, D. Mané, R. Monga, S.
362. H. Yang, T. Passerini, T. Mansi, D. Comaniciu, Moore,D. Murray,C.Olah, M.Schuster,J.Shlens,
Data-driven model reduction for fast, high fidelity B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.
atrial electrophysiology computations, in: Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P.
Functional Imaging and Modeling of the Heart - Warden,M.Wattenberg, M. Wicke, Y. Yu,X.Zheng,
8th International Conference, FIMH 2015 TensorFlow: Large-Scale Machine Learning on
Maastricht, the Netherlands, June 25-27, 2015. Heterogeneous Systems, 2015, Software available
Proceedings, 2015, pp. 466–474. from tensorflow.org.
363. F. Atienza, J. Almendral, J. Moreno, R. 375. Philippe Weinzaepfel, Jerome Revaud, Zaid
Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. Harchaoui, Cordelia Schmid, DeepFlow: Large
Villacastin, E. Torrecilla, A. Sanchez, R. displacement optical flow with deep matching, in:
Ploutz-Snyder, J. Jalife, O. Berenfeld, Activation of Proceedings of the IEEE International Conference
inward rectifier potassium channels accelerates on Computer Vision, 2013, pp. 1385–1392.
atrial fibrillation in humans: evidence for a 376. Mark Alber, Adrian Buganza Tepole, William
reentrant mechanism, Circulation 114 (2006) Cannon, Suvranu De, Salvador Dura-Bernal,
2434–2442. Krishna Garikipati, George Karniadakis, William
364. O. Aslanidi, M. Colman, J. Stott, H. Dobrzynski, M. W. Lytton, Paris Perdikaris, Linda Petzold, Ellen
Boyett, A.Holden,H.Zhang,3dvirtualhuman Kuhl, Integrating machine learning and multiscale