Page 251 - Artificial Intelligence for Computational Modeling of the Heart
P. 251

224  Bibliography





                276. G. Huang, Z. Liu, L. Van Der Maaten, K.Q.  289. Q.Guo,W.Feng, C. Zhou,R.Huang,L.Wan,S.
                    Weinberger, Densely connected convolutional  Wang, Learning dynamic Siamese network for
                    networks, in: IEEE CVPR, 2017, pp. 4700–4708.  visual object tracking, in: 2017 IEEE International
                277. J.D.Dormer, L. Ma,M.Halicek,C.M.Reilly,E.  Conference on Computer Vision (ICCV), IEEE,
                    Schreibmann, B. Fei, Heart chamber segmentation  2017, pp. 1781–1789.
                    from ct using convolutional neural networks, in:  290. J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi,
                    Medical Imaging: Biomedical Applications in  P.H. Torr, End-to-end representation learning for
                    Molecular, Structural, and Functional Imaging,  correlation filter based tracking, in: Computer
                    vol. 10578, 2018.                           Vision and Pattern Recognition (CVPR), 2017 IEEE
                278. Q.Zheng,H.Delingette,N.Duchateau,N.Ayache,  Conference on, IEEE, 2017, pp. 5000–5008.
                    3-D consistent and robust segmentation of  291. Q. Wang, J. Gao, J. Xing, M. Zhang, W. Hu, Dcfnet:
                    cardiac images by deep learning with spatial  discriminant correlation filters network for visual
                    propagation, IEEE Transactions on Medical   tracking, arXiv preprint, arXiv:1704.04057, 2017.
                    Imaging 37 (9) (2018) 2137–2148.       292. B.Li, J. Yan, W. Wu,Z.Zhu,X.Hu, High
                279. C. Bercea, O. Pauly, A.K. Maier, F.C. Ghesu,  performance visual tracking with Siamese region
                    SHAMANN: shared memory augmented neural     proposal network, in: Proceedings of the IEEE
                    networks, in: IPMI, 2019, in press.         Conference on Computer Vision and Pattern
                280. D.Yang, D. Xu,S.K. Zhou,B.Georgescu,M.Chen,  Recognition, 2018, pp. 8971–8980.
                    S. Grbic, D. Metaxas, D. Comaniciu, Automatic  293. B.Li, W. Wu,Q.Wang, F. Zhang, J. Xing,J.Yan,
                    liver segmentation using an adversarial     Siamrpn++: evolution of Siamese visual tracking
                    image-to-image network, in: MICCAI, Springer,  with very deep networks, arXiv preprint,
                    2017, pp. 507–515.                          arXiv:1812.11703, 2018.
                281. Y.Wang, B. Georgescu, T. Chen,W.Wu, P. Wang,X.  294. Z.Zhu,Q.Wang, B. Li,W.Wu, J. Yan, W. Hu,
                    Lu,R.Ionasec,Y.Zheng,D.Comaniciu,           Distractor-aware Siamese networks for visual
                    Learning-based detection and tracking in medical  object tracking, in: Proceedings of the European
                    imaging: a probabilistic approach, in:      Conference on Computer Vision (ECCV), 2018,
                    Deformation Models, Springer, 2013, pp. 209–235.  pp. 101–117.
                282. A. Yilmaz, O. Javed, M. Shah, Object tracking: a  295. H. Nam, B. Han, Learning multi-domain
                    survey, ACM Computing Surveys (CSUR) 38 (4)  convolutional neural networks for visual tracking,
                    (2006) 13.                                  in: The IEEE Conference on Computer Vision and
                283. Y. Wu, J. Lim, M.-H. Yang, Online object tracking: a  Pattern Recognition (CVPR), June 2016.
                    benchmark, in: Proceedings of the IEEE  296. Y. Song, C. Ma, L. Gong, J. Zhang, R.W. Lau, M.-H.
                    Conference on Computer Vision and Pattern   Yang, Crest: convolutional residual learning for
                    Recognition, 2013, pp. 2411–2418.           visual tracking, in: Computer Vision (ICCV), 2017
                284. H.Yang, L. Shao,F.Zheng,L.Wang, Z. Song,   IEEE International Conference on, IEEE, 2017,
                    Recent advances and trends in visual tracking: a  pp. 2574–2583.
                    review, Neurocomputing 74 (18) (2011) 3823–3831.  297. D.S.Bolme,J.R.Beveridge,B.A.Draper, Y.M. Lui,
                285. M.Fiaz, A. Mahmood,S.K. Jung,Trackingnoisy  Visual object tracking using adaptive correlation
                    targets: a review of recent object tracking  filters, in: Computer Vision and Pattern
                    approaches, arXiv preprint, arXiv:1802.03098,  Recognition (CVPR), 2010 IEEE Conference on,
                    2018.                                       IEEE, 2010, pp. 2544–2550.
                286. J.Bromley,I.Guyon,Y.LeCun,E.Säckinger,R.  298. M. Danelljan, G. Hager, F. Shahbaz Khan, M.
                    Shah, Signature verification using a “Siamese”  Felsberg, Convolutional features for correlation
                    time delay neural network, in: Advances in Neural  filter based visual tracking, in: Proceedings of the
                    Information Processing Systems, 1994,       IEEE International Conference on Computer
                    pp. 737–744.                                Vision Workshops, 2015, pp. 58–66.
                287. L. Bertinetto, J. Valmadre, J.F. Henriques, A.  299. Z.Zhu,W.Wu, W. Zou, J. Yan, End-to-endflow
                    Vedaldi, P.H. Torr, Fully-convolutional Siamese  correlation tracking with spatial-temporal
                    networks for object tracking, in: European  attention, Illumination 42 (2018) 20.
                    Conference on Computer Vision, Springer, 2016,  300. N. Parajuli, A. Lu, J.C. Stendahl, M. Zontak, N.
                    pp. 850–865.                                Boutagy, I. Alkhalil, M. Eberle, B.A. Lin, M.
                288. D. Held, S. Thrun, S. Savarese, Learning to track at  O’Donnell, A.J. Sinusas, et al., Flow network based
                    100 fps with deep regression networks, in:  cardiac motion tracking leveraging learned feature
                    European Conference Computer Vision (ECCV),  matching, in: International Conference on
                    2016.                                       Medical Image Computing and
   246   247   248   249   250   251   252   253   254   255   256