Page 248 - Artificial Intelligence for Computational Modeling of the Heart
P. 248
Bibliography 221
questions, Progress in Biophysics and Molecular 220. O. Zettinig, T. Mansi, D. Neumann, B. Georgescu,
Biology 104 (1) (2011) 22–48. S. Rapaka, P. Seegerer, E. Kayvanpour, F.
210. J. Pitt-Francis, P. Pathmanathan, M.O. Bernabeu, Sedaghat-Hamedani, A. Amr, J. Haas, et al.,
R. Bordas,J.Cooper,A.G.Fletcher, G.R. Mirams,P. Data-driven estimation of cardiac electrical
Murray, J.M. Osborne, A. Walter, et al., Chaste: a diffusivity from 12-lead ecg signals, Medical Image
test-driven approach to software development for Analysis 18 (8) (2014) 1361–1376.
biological modelling, Computer Physics 221. S.A. Niederer, E. Kerfoot, A.P. Benson, M.O.
Communications 180 (12) (2009) 2452–2471. Bernabeu, O. Bernus, C. Bradley, E.M. Cherry, R.
211. C. Bradley, A. Bowery, R. Britten, V. Budelmann, O. Clayton, F.H. Fenton,A.Garny,etal.,Verification
Camara, R. Christie, A. Cookson, A.F. Frangi, T.B. of cardiac tissue electrophysiology simulators
Gamage, T. Heidlauf, et al., Opencmiss: a using an n-version benchmark, Philosophical
multi-physics & multi-scale computational Transactions of the Royal Society A: Mathematical,
infrastructure for the vph/physiome project, Physical and Engineering Sciences 369 (1954)
Progress in Biophysics and Molecular Biology (2011) 4331–4351.
107 (1) (2011) 32–47. 222. R.C. Barr, M. Ramsey, M.S. Spach, Relating
212. H. Talbot, S. Marchesseau, C. Duriez, M. epicardial to body surface potential distributions
Sermesant, S. Cotin, H. Delingette, Towards an by means of transfer coefficients based on
interactive electromechanical model of the heart, geometry measurements, IEEE Transactions on
Interface Focus 3 (2) (2013). Biomedical Engineering 1 (1977) 1–11.
223. B.-U. Kohler, C. Hennig, R. Orglmeister, The
213. P. Pathmanathan, M. Bernabeu, S. Niederer, D.
Gavaghan, D. Kay, Computational modelling of principles of software qrs detection, IEEE
cardiac electrophysiology: explanation of the Engineering in Medicine and Biology Magazine
variability of results from different numerical 21 (1) (2002) 42–57.
solvers, International Journal for Numerical 224. K.C.Wong, L. Wang,H.Zhang,H.Liu,P.Shi,
Methods in Biomedical Engineering 28 (8) (2012) Meshfree implementation of individualized active
890–903. cardiac dynamics, Computerized Medical Imaging
and Graphics 34 (1) (2010) 91–103.
214. S. Chen, G.D. Doolen, Lattice Boltzmann method 225. È. Lluch, M. De Craene, B. Bijnens, M. Sermesant,
for fluid flows, Annual Review of Fluid Mechanics J. Noailly, O. Camara, H.G. Morales, Breaking the
30 (1) (1998) 329–364.
state of the heart: meshless model for cardiac
215. C.K. Aidun, J.R. Clausen, Lattice-Boltzmann mechanics, Biomechanics and Modeling in
method for complex flows, Annual Review of Fluid
Mechanobiology (2019) 1–13.
Mechanics 42 (1) (2010) 439–472.
226. Z.A. Taylor, M. Cheng, S. Ourselin, High-speed
216. H. Yoshida, M. Nagaoka, Multiple-relaxation-time
nonlinear finite element analysis for surgical
lattice Boltzmann model for the convection and simulation using graphics processing units, IEEE
anisotropic diffusion equation, Journal of Transactions on Medical Imaging 27 (5) (2008)
Computational Physics 229 (October 2010) 650–663.
7774–7795. 227. A.J. Chorin, On the convergence of discrete
217. S. Rapaka, T. Mansi, B. Georgescu, M. Pop, G.A. approximations to the Navier–Stokes equations,
Wright, A. Kamen, D. Comaniciu, Lbm-ep: Mathematics of Computation 23 (106) (1969)
lattice-Boltzmann method for fast cardiac 341–353.
electrophysiology simulation from 3d images, in: 228. C. Greenshields, H. Weller, A unified formulation
Medical Image Computing and for continuum mechanics applied to
Computer-Assisted Intervention–MICCAI 2012, fluid–structure interaction in flexible tubes,
Springer LNCS, 2012, pp. 33–40. International Journal for Numerical Methods in
218. B. Georgescu, S. Rapaka, T. Mansi, O. Zettinig, A. Engineering 64 (12) (2005) 1575–1593.
Kamen, D. Comaniciu, Towards real-time cardiac 229. C.A. Taylor, T.A. Fonte, J.K. Min, Computational
electrophysiology computations using gp-gpu fluid dynamics applied to cardiac computed
lattice-Boltzmann method, in: High-Performance tomography for noninvasive quantification of
Computing, a 2013 MICCAI Workshop, 2013. fractional flow reserve: scientific basis, Journal of
219. J.Campos, R. Oliveira,R.dos Santos,B.Rocha, the American College of Cardiology 61 (22) (2013)
Lattice Boltzmann method for parallel simulations 2233–2241.
of cardiac electrophysiology using gpus, Journal of 230. E.Kung, A. Baretta,C.Baker,G.Arbia,G.Biglino,
Computational and Applied Mathematics (2015). C. Corsini, S. Schievano, I.E. Vignon-Clementel, G.