Page 245 - Artificial Intelligence for Computational Modeling of the Heart
P. 245

218  Bibliography





                    IEEE Engineering in Medicine and Biology Society,  162. S.G. Shroff, J.S. Janicki, K.T. Weber, Evidence and
                    2014, pp. 6774–6777.                        quantitation of left ventricular systolic resistance,
                152. A. Quarteroni, A. Veneziani, C. Vergara, Geometric  The American Journal of Physiology 249 (2 Pt 2)
                    multiscale modeling of the cardiovascular system,  (1985) H358–H370.
                    between theory and practice, Computer Methods  163. J.Mynard, M. Davidson,D.Penny,J.Smolich,A
                    in Applied Mechanics and Engineering 302 (2016)  simple, versatile valve model for use in lumped
                    193–252.                                    parameter and one-dimensional cardiovascular
                153. A. Noordergraaf, P.D. Verdouw, H.B. Boom, The use  models, International Journal for Numerical
                    of an analog computer in a circulation model,  Methods in Biomedical Engineering 28 (6–7)
                    Progress in Cardiovascular Diseases 5 (5) (1963)  (2012) 626–641.
                    419–439.                               164. N. Westerhof, J.-W. Lankhaar, B.E. Westerhof, The
                154. N.Westerhof,F.Bosman, C.J. De Vries, A.    arterial windkessel, Medical & Biological
                    Noordergraaf, Analog studies of the human   Engineering & Computing 47 (2) (2009) 131–141.
                    systemic arterial tree, Journal of Biomechanics  165. T.Wehrum, F. Guenther,A.Fuchs,F.Schuchardt, A.
                    2 (2) (1969) 121–143.                       Hennemuth, A. Harloff, Measurement of cardiac
                                                                valve and aortic blood flow velocities in stroke
                155. S.Sherwin,L.Formaggia, J. Peiro, V. Franke,
                    Computational modelling of 1d blood flow with  patients: a comparison of 4d flow mri and
                    variable mechanical properties and its application  echocardiography, The International Journal of
                    to the simulation of wave propagation in the  Cardiovascular Imaging 34 (6) (2018) 939–946.
                    human arterial system, International Journal for  166. T.Sugiura,Y.Matsumura,H.Takeuchi, T.
                    Numerical Methods in Fluids 43 (6–7) (2003)  Okumiya, Intravascular hemolysis in patients with
                    673–700.                                    aortic stenosis: evaluation by erythrocyte creatine,
                                                                Journal of the American College of Cardiology
                156. L. Formaggia, D. Lamponi, A. Quarteroni,   65 (10 Supplement) (2015) A1975.
                    One-dimensional models for blood flow in  167. P. Garg, R.J. van der Geest, P.P. Swoboda, S.
                    arteries, Journal of Engineering Mathematics  Crandon, G.J. Fent,J.R.Foley,L.E. Dobson,T.Al
                    47 (3–4) (2003) 251–276.
                                                                Musa, S. Onciul, S. Vijayan, et al., Left ventricular
                157. J. Mynard, P. Nithiarasu, A 1d arterial blood flow  thrombus formation in myocardial infarction is
                    model incorporating ventricular pressure, aortic  associated with altered left ventricular blood flow
                    valve and regional coronary flow using the locally  energetics, European Heart
                    conservative Galerkin (lcg) method,         Journal-Cardiovascular Imaging 20 (1) (2018)
                    Communications in Numerical Methods in
                                                                108–117.
                    Engineering 24 (5) (2008) 367–417.
                                                           168. M. Hofer, G. Rappitsch, K. Perktold, W. Trubel, H.
                158. J. Alastruey, A.W. Khir, K.S. Matthys, P. Segers, S.J.
                                                                Schima, Numerical study of wall mechanics and
                    Sherwin, P.R. Verdonck, K.H. Parker, J. Peiró, Pulse  fluid dynamics in end-to-side anastomoses and
                    wave propagation in a model human arterial  correlation to intimal hyperplasia, Journal of
                    network: assessment of 1-d visco-elastic    Biomechanics 29 (10) (1996) 1297–1308.
                    simulations against in vitro measurements,  169. J.-F. Gerbeau, M. Vidrascu, P. Frey, Fluid–structure
                    Journal of Biomechanics 44 (12) (2011) 2250–2258.  interaction in blood flows on geometries based on
                159. L.O. Müller, E.F. Toro, A global multiscale  medical imaging, Computers & Structures 83 (2–3)
                    mathematical model for the human circulation  (2005) 155–165.
                    with emphasis on the venous system,    170. B.Wolters,M.Rutten, G. Schurink,U.Kose, J. De
                    International Journal for Numerical Methods in  Hart,F.Van De Vosse,Apatient-specific
                    Biomedical Engineering 30 (7) (2014) 681–725.  computational model of fluid–structure
                160. P.J. Blanco, S.M. Watanabe, M.A.R. Passos, P.A.  interaction in abdominal aortic aneurysms,
                    Lemos, R.A. Feijóo, An anatomically detailed  Medical Engineering & Physics 27 (10) (2005)
                    arterial network model for one-dimensional  871–883.
                    computational hemodynamics, IEEE Transactions  171. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E.
                    on Biomedical Engineering 62 (2) (2014) 736–753.  Tezduyar, Fluid–structure interaction modeling of
                161. H. Suga, Theoretical analysis of a left-ventricular  a patient-specific cerebral aneurysm: influence of
                    pumping model based on the systolic         structural modeling, Computational Mechanics
                    time-varying pressure/volume ratio, IEEE    43 (1) (2008) 151.
                    Transactions on Biomedical Engineering 1 (1971)  172. Y. Bazilevs, V.M. Calo, Y. Zhang, T.J. Hughes,
                    47–55.                                      Isogeometric fluid–structure interaction analysis
   240   241   242   243   244   245   246   247   248   249   250