Page 245 - Artificial Intelligence for Computational Modeling of the Heart
P. 245
218 Bibliography
IEEE Engineering in Medicine and Biology Society, 162. S.G. Shroff, J.S. Janicki, K.T. Weber, Evidence and
2014, pp. 6774–6777. quantitation of left ventricular systolic resistance,
152. A. Quarteroni, A. Veneziani, C. Vergara, Geometric The American Journal of Physiology 249 (2 Pt 2)
multiscale modeling of the cardiovascular system, (1985) H358–H370.
between theory and practice, Computer Methods 163. J.Mynard, M. Davidson,D.Penny,J.Smolich,A
in Applied Mechanics and Engineering 302 (2016) simple, versatile valve model for use in lumped
193–252. parameter and one-dimensional cardiovascular
153. A. Noordergraaf, P.D. Verdouw, H.B. Boom, The use models, International Journal for Numerical
of an analog computer in a circulation model, Methods in Biomedical Engineering 28 (6–7)
Progress in Cardiovascular Diseases 5 (5) (1963) (2012) 626–641.
419–439. 164. N. Westerhof, J.-W. Lankhaar, B.E. Westerhof, The
154. N.Westerhof,F.Bosman, C.J. De Vries, A. arterial windkessel, Medical & Biological
Noordergraaf, Analog studies of the human Engineering & Computing 47 (2) (2009) 131–141.
systemic arterial tree, Journal of Biomechanics 165. T.Wehrum, F. Guenther,A.Fuchs,F.Schuchardt, A.
2 (2) (1969) 121–143. Hennemuth, A. Harloff, Measurement of cardiac
valve and aortic blood flow velocities in stroke
155. S.Sherwin,L.Formaggia, J. Peiro, V. Franke,
Computational modelling of 1d blood flow with patients: a comparison of 4d flow mri and
variable mechanical properties and its application echocardiography, The International Journal of
to the simulation of wave propagation in the Cardiovascular Imaging 34 (6) (2018) 939–946.
human arterial system, International Journal for 166. T.Sugiura,Y.Matsumura,H.Takeuchi, T.
Numerical Methods in Fluids 43 (6–7) (2003) Okumiya, Intravascular hemolysis in patients with
673–700. aortic stenosis: evaluation by erythrocyte creatine,
Journal of the American College of Cardiology
156. L. Formaggia, D. Lamponi, A. Quarteroni, 65 (10 Supplement) (2015) A1975.
One-dimensional models for blood flow in 167. P. Garg, R.J. van der Geest, P.P. Swoboda, S.
arteries, Journal of Engineering Mathematics Crandon, G.J. Fent,J.R.Foley,L.E. Dobson,T.Al
47 (3–4) (2003) 251–276.
Musa, S. Onciul, S. Vijayan, et al., Left ventricular
157. J. Mynard, P. Nithiarasu, A 1d arterial blood flow thrombus formation in myocardial infarction is
model incorporating ventricular pressure, aortic associated with altered left ventricular blood flow
valve and regional coronary flow using the locally energetics, European Heart
conservative Galerkin (lcg) method, Journal-Cardiovascular Imaging 20 (1) (2018)
Communications in Numerical Methods in
108–117.
Engineering 24 (5) (2008) 367–417.
168. M. Hofer, G. Rappitsch, K. Perktold, W. Trubel, H.
158. J. Alastruey, A.W. Khir, K.S. Matthys, P. Segers, S.J.
Schima, Numerical study of wall mechanics and
Sherwin, P.R. Verdonck, K.H. Parker, J. Peiró, Pulse fluid dynamics in end-to-side anastomoses and
wave propagation in a model human arterial correlation to intimal hyperplasia, Journal of
network: assessment of 1-d visco-elastic Biomechanics 29 (10) (1996) 1297–1308.
simulations against in vitro measurements, 169. J.-F. Gerbeau, M. Vidrascu, P. Frey, Fluid–structure
Journal of Biomechanics 44 (12) (2011) 2250–2258. interaction in blood flows on geometries based on
159. L.O. Müller, E.F. Toro, A global multiscale medical imaging, Computers & Structures 83 (2–3)
mathematical model for the human circulation (2005) 155–165.
with emphasis on the venous system, 170. B.Wolters,M.Rutten, G. Schurink,U.Kose, J. De
International Journal for Numerical Methods in Hart,F.Van De Vosse,Apatient-specific
Biomedical Engineering 30 (7) (2014) 681–725. computational model of fluid–structure
160. P.J. Blanco, S.M. Watanabe, M.A.R. Passos, P.A. interaction in abdominal aortic aneurysms,
Lemos, R.A. Feijóo, An anatomically detailed Medical Engineering & Physics 27 (10) (2005)
arterial network model for one-dimensional 871–883.
computational hemodynamics, IEEE Transactions 171. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E.
on Biomedical Engineering 62 (2) (2014) 736–753. Tezduyar, Fluid–structure interaction modeling of
161. H. Suga, Theoretical analysis of a left-ventricular a patient-specific cerebral aneurysm: influence of
pumping model based on the systolic structural modeling, Computational Mechanics
time-varying pressure/volume ratio, IEEE 43 (1) (2008) 151.
Transactions on Biomedical Engineering 1 (1971) 172. Y. Bazilevs, V.M. Calo, Y. Zhang, T.J. Hughes,
47–55. Isogeometric fluid–structure interaction analysis