Page 241 - Artificial Intelligence for Computational Modeling of the Heart
P. 241
214 Bibliography
65. J. Nagumo, S. Arimoto, S. Yoshizawa, An active 77. P.C.Franzone, L. Guerri,S.Rovida, Wavefront
pulse transmission line simulating nerve axon, propagation in an activation model of the
Proceeding IRE 50 (1962) 2061–2070. anisotropic cardiac tissue: asymptotic analysis
66. R.Clayton,A.Panfilov,Aguidetomodelling and numerical simulations, Journal of
cardiac electrical activity in anatomically detailed Mathematical Biology 28 (2) (1990) 121–176.
ventricles, Progress in Biophysics and Molecular 78. J.P.Keener,J.Sneyd,Mathematical Physiology,
Biology 96 (1–3) (2008) 19–43. vol. 1, Springer, 1998.
67. D. Noble, A modification of the Hodgkin–Huxley 79. M.Sermesant, E.Konukoglu,H.Delingette,Y.
equations applicable to Purkinje fibre action and Coudière, P. Chinchapatnam, K.S. Rhode, R.
pacemaker potentials, The Journal of Physiology Razavi, N. Ayache, An anisotropic multi-front fast
160 (2) (1962) 317–352. marching method for real-time simulation of
68. C.-h. Luo, Y. Rudy, A model of the ventricular cardiac electrophysiology, in: International
cardiac action potential. Depolarization, Conference on Functional Imaging and Modeling
repolarization, and their interaction, Circulation of the Heart, Springer, 2007, pp. 160–169.
Research 68 (6) (1991) 1501–1526. 80. J.A. Sethian, Level Set Methods and Fast Marching
69. D.Noble,A.Varghese, P. Kohl,P.Noble,Improved Methods: Evolving Interfaces in Computational
Guinea-pig ventricular cell model incorporating a Geometry Fluid Mechanics, Computer Vision, and
diadic space, ikr and iks, and length-and Materials Science, vol. 3, Cambridge University
tension-dependent processes, The Canadian Press, 1999.
Journal of Cardiology 14 (1) (1998) 123–134. 81. E. Konukoglu, M. Sermesant, O. Clatz, J.-M. Peyrat,
70. K.M. Holzem, E.J. Madden, I.R. Efimov, Human H. Delingette, N. Ayache, A recursive anisotropic
cardiac systems electrophysiology and fast marching approach to reaction diffusion
arrhythmogenesis: iteration of experiment and equation: application to tumor growth modeling,
computation, Europace 16 (suppl 4) (2014), in: Biennial International Conference on
iv77–iv85. Information Processing in Medical Imaging,
71. C.C. Mitchell, D.G. Schaeffer, A two-current model Springer, 2007, pp. 687–699.
for the dynamics of cardiac membrane, Bulletin of 82. M. Wallman, N.P. Smith, B. Rodriguez,
Mathematical Biology 65 (5) (2003) 767–793. Computational methods to reduce uncertainty in
72. C.Corrado,J.-F. Gerbeau,P.Moireau, the estimation of cardiac conduction properties
Identification of weakly coupled multiphysics from electroanatomical recordings, Medical Image
problems. application to the inverse problem of Analysis 18 (1) (2014) 228–240.
electrocardiography, Journal of Computational 83. E. Pernod, M. Sermesant, E. Konukoglu, J. Relan,
Physics 283 (2015) 271–298. H. Delingette, N. Ayache, A multi-front Eikonal
73. J. Relan, M. Sermesant, M. Pop, H. Delingette, M. model of cardiac electrophysiology for interactive
Sorine, G.A. Wright, N. Ayache, Parameter simulation of radio-frequency ablation,
estimation of a 3d cardiac electrophysiology Computers & Graphics 35 (2) (2011) 431–440.
model including the restitution curve using 84. K.H. Tusscher, A.V. Panfilov, Modelling of the
optical and mr data, in: World Congress on ventricular conduction system, Progress in
Medical Physics and Biomedical Engineering, Biophysics and Molecular Biology 96 (1–3) (2008)
September 7–12, 2009, Munich, Germany, 152–170.
Springer, 2009, pp. 1716–1719. 85. T. Ijiri, T. Ashihara, T. Yamaguchi, K. Takayama, T.
74. H. Talbot, S. Cotin, R. Razavi, C. Rinaldi, H. Igarashi, T. Shimada, T. Namba, R. Haraguchi, K.
Delingette, Personalization of Cardiac Nakazawa, A procedural method for modeling the
Electrophysiology Model Using the Unscented Purkinje fibers of the heart, Journal of
Kalman Filtering, 2015. Physiological Sciences 58 (7) (2008) 481–486.
75. Y. Coudière, C. Pierre, Stability and convergence of 86. R. Sebastian, V. Zimmerman, D. Romero, A.F.
a finite volume method for two systems of Frangi, Construction of a computational
reaction–diffusion equations in electro-cardiology, anatomical model of the peripheral cardiac
Nonlinear Analysis: Real World Applications 7 (4) conduction system, IEEE Transactions on
(2006) 916–935. Biomedical Engineering 58 (12) (2011) 3479–3482.
76. Y. Bourgault, Y. Coudiere, C. Pierre, Existence and 87. E.J.Vigmond,C.Clements, D.M. McQueen,C.S.
uniqueness of the solution for the bidomain Peskin, Effect of bundle branch block on cardiac
model used in cardiac electrophysiology, output: a whole heart simulation study, Progress
Nonlinear Analysis: Real World Applications 10 (1) in Biophysics and Molecular Biology 97 (2–3)
(2009) 458–482. (2008) 520–542.