Page 239 - Artificial Intelligence for Computational Modeling of the Heart
P. 239
212 Bibliography
22. T.Mansi,I.Voigt,B.Georgescu,X.Zheng,E.A. volumes using marginal space learning and
Mengue,M.Hackl,R.I.Ionasec,T.Noack,J. steerable features, IEEE Transactions on Medical
Seeburger, D. Comaniciu, An integrated Imaging 27 (11) (2008) 1668–1681.
framework for finite-element modeling of mitral 32. R.I.Ionasec,I.Voigt,B.Georgescu,Y.Wang, H.
valve biomechanics from medical images: Houle, F. Vega-Higuera, N. Navab, D. Comaniciu,
application to mitralclip intervention planning, Patient-specific modeling and quantification of
Medical Image Analysis 16 (7) (2012) 1330–1346. the aortic and mitral valves from 4-D cardiac CT
23. A. Drach, A.H. Khalighi, M.S. Sacks, A and TEE, IEEE Transactions on Medical Imaging
comprehensive pipeline for multi-resolution 29 (Sept. 2010) 1636–1651.
modeling of the mitral valve: Validation, 33. K.Hammernik,T.Klatzer,E.Kobler, M.P. Recht,
computational efficiency, and predictive D.K. Sodickson, T. Pock, F. Knoll, Learning a
capability, International Journal for Numerical variational network for reconstruction of
Methods in Biomedical Engineering 34 (2) (2018) accelerated mri data, Magnetic Resonance in
e2921. Medicine 79 (6) (2018) 3055–3071.
24. T.Mansi,B.André,M.Lynch,M.Sermesant, H. 34. R. Booij, R.P. Budde, M.L. Dijkshoorn, M. van
Delingette, Y. Boudjemline, N. Ayache, Virtual Straten, Accuracy of automated patient
pulmonary valve replacement interventions with a positioning in ct using a 3d camera for body
personalised cardiac electromechanical model, in: contour detection, European Radiology 29 (4)
Recent Advances in the 3D Physiological Human, (2019) 2079–2088.
Springer, 2009, pp. 75–90. 35. V.Singh,K.Ma, B. Tamersoy,Y.-J. Chang, A.
25. T.M.van Bakel, K.D.Lau,J.Hirsch-Romano,S. Wimmer, T. O’Donnell, T. Chen, Darwin:
Trimarchi, A.L. Dorfman, C.A. Figueroa, deformable patient avatar representation with
Patient-specific modeling of hemodynamics: deep image network, in: International Conference
supporting surgical planning in a fontan on Medical Image Computing and
circulation correction, Journal of Cardiovascular Computer-Assisted Intervention, Springer, 2017,
Translational Research 11 (2) (2018) 145–155. pp. 497–504.
26. D. Neumann, T. Mansi, B. Georgescu, A. Kamen, E. 36. B. Lou, S. Doken, T. Zhuang, D. Wingerter, M.
Kayvanpour, A. Amr, F. Sedaghat-Hamedani, J. Gidwani, N. Mistry, L. Ladic, A. Kamen, M.E.
Haas, H. Katus, B. Meder, J. Hornegger, D. Abazeed, An image-based deep learning
Comaniciu, Robust image-based estimation of framework for individualising radiotherapy dose: a
cardiac tissue parameters and their uncertainty retrospective analysis of outcome prediction, The
from noisy data, in: International Conference on Lancet Digital Health 1 (3) (2019) e136–e147.
Medical Image Computing and 37. T.Mansi,B.Georgescu,J.Hussan, P.J. Hunter,A.
Computer-Assisted Intervention, in: LNCS, Kamen, D. Comaniciu, Data-driven reduction of a
vol. 8674, Springer, 2014, pp. 9–16. cardiac myofilament model, in: International
27. J.Dhamala, H.J.Arevalo,J.Sapp, B.M. Horácek, Conference on Functional Imaging and Modeling
K.C. Wu, N.A. Trayanova, L. Wang, Quantifying the of the Heart, Springer, 2013, pp. 232–240.
uncertainty in model parameters using Gaussian 38. S. He, Y. Li, Y. Feng, S. Ho, S. Ravanbakhsh, W.
process-based Markov chain Monte Carlo in Chen, B. Póczos, Learning to predict the
cardiac electrophysiology, Medical Image Analysis cosmological structure formation, Proceedings of
48 (2018) 43–57. the National Academy of Sciences (2019)
28. J. McCarthy, Artificial intelligence, logic and 201821458.
formalizing common sense, in: Philosophical 39. B.Kim,V.C.Azevedo,N.Thuerey,T.Kim,M.Gross,
Logic and Artificial Intelligence, Springer, 1989, B. Solenthaler, Deep Fluids: A Generative Network
pp. 161–190. for Parameterized Fluid Simulations, Computer
29. W.S. McCulloch, W. Pitts, A logical calculus of the Graphics Forum, vol. 38, Wiley Online Library,
ideas immanent in nervous activity, The Bulletin 2019, pp. 59–70.
of Mathematical Biophysics 5 (4) (1943) 115–133. 40. R. Modrzejewski, T. Collins, A. Bartoli, A.
30. A. Krizhevsky, I. Sutskever, H. geoffrey e., “alex net, Hostettler, J. Marescaux, Soft-body registration of
”, Advances in Neural Information Processing pre-operative 3d models to intra-operative rgbd
Systems 25 (2012) 1–9. partial body scans, in: International Conference
31. Y.Zheng,A.Barbu,B.Georgescu,M.Scheuering, on Medical Image Computing and
D. Comaniciu, Four-chamber heart modeling and Computer-Assisted Intervention, Springer, 2018,
automatic segmentation for 3-d cardiac ct pp. 39–46.