Page 239 - Artificial Intelligence for Computational Modeling of the Heart
P. 239

212  Bibliography





                 22. T.Mansi,I.Voigt,B.Georgescu,X.Zheng,E.A.   volumes using marginal space learning and
                    Mengue,M.Hackl,R.I.Ionasec,T.Noack,J.       steerable features, IEEE Transactions on Medical
                    Seeburger, D. Comaniciu, An integrated      Imaging 27 (11) (2008) 1668–1681.
                    framework for finite-element modeling of mitral  32. R.I.Ionasec,I.Voigt,B.Georgescu,Y.Wang, H.
                    valve biomechanics from medical images:     Houle, F. Vega-Higuera, N. Navab, D. Comaniciu,
                    application to mitralclip intervention planning,  Patient-specific modeling and quantification of
                    Medical Image Analysis 16 (7) (2012) 1330–1346.  the aortic and mitral valves from 4-D cardiac CT
                 23. A. Drach, A.H. Khalighi, M.S. Sacks, A     and TEE, IEEE Transactions on Medical Imaging
                    comprehensive pipeline for multi-resolution  29 (Sept. 2010) 1636–1651.
                    modeling of the mitral valve: Validation,  33. K.Hammernik,T.Klatzer,E.Kobler, M.P. Recht,
                    computational efficiency, and predictive     D.K. Sodickson, T. Pock, F. Knoll, Learning a
                    capability, International Journal for Numerical  variational network for reconstruction of
                    Methods in Biomedical Engineering 34 (2) (2018)  accelerated mri data, Magnetic Resonance in
                    e2921.                                      Medicine 79 (6) (2018) 3055–3071.
                 24. T.Mansi,B.André,M.Lynch,M.Sermesant, H.  34. R. Booij, R.P. Budde, M.L. Dijkshoorn, M. van
                    Delingette, Y. Boudjemline, N. Ayache, Virtual  Straten, Accuracy of automated patient
                    pulmonary valve replacement interventions with a  positioning in ct using a 3d camera for body
                    personalised cardiac electromechanical model, in:  contour detection, European Radiology 29 (4)
                    Recent Advances in the 3D Physiological Human,  (2019) 2079–2088.
                    Springer, 2009, pp. 75–90.              35. V.Singh,K.Ma, B. Tamersoy,Y.-J. Chang, A.
                 25. T.M.van Bakel, K.D.Lau,J.Hirsch-Romano,S.  Wimmer, T. O’Donnell, T. Chen, Darwin:
                    Trimarchi, A.L. Dorfman, C.A. Figueroa,     deformable patient avatar representation with
                    Patient-specific modeling of hemodynamics:   deep image network, in: International Conference
                    supporting surgical planning in a fontan    on Medical Image Computing and
                    circulation correction, Journal of Cardiovascular  Computer-Assisted Intervention, Springer, 2017,
                    Translational Research 11 (2) (2018) 145–155.  pp. 497–504.
                 26. D. Neumann, T. Mansi, B. Georgescu, A. Kamen, E.  36. B. Lou, S. Doken, T. Zhuang, D. Wingerter, M.
                    Kayvanpour, A. Amr, F. Sedaghat-Hamedani, J.  Gidwani, N. Mistry, L. Ladic, A. Kamen, M.E.
                    Haas, H. Katus, B. Meder, J. Hornegger, D.  Abazeed, An image-based deep learning
                    Comaniciu, Robust image-based estimation of  framework for individualising radiotherapy dose: a
                    cardiac tissue parameters and their uncertainty  retrospective analysis of outcome prediction, The
                    from noisy data, in: International Conference on  Lancet Digital Health 1 (3) (2019) e136–e147.
                    Medical Image Computing and             37. T.Mansi,B.Georgescu,J.Hussan, P.J. Hunter,A.
                    Computer-Assisted Intervention, in: LNCS,   Kamen, D. Comaniciu, Data-driven reduction of a
                    vol. 8674, Springer, 2014, pp. 9–16.        cardiac myofilament model, in: International
                 27. J.Dhamala, H.J.Arevalo,J.Sapp, B.M. Horácek,  Conference on Functional Imaging and Modeling
                    K.C. Wu, N.A. Trayanova, L. Wang, Quantifying the  of the Heart, Springer, 2013, pp. 232–240.
                    uncertainty in model parameters using Gaussian  38. S. He, Y. Li, Y. Feng, S. Ho, S. Ravanbakhsh, W.
                    process-based Markov chain Monte Carlo in   Chen, B. Póczos, Learning to predict the
                    cardiac electrophysiology, Medical Image Analysis  cosmological structure formation, Proceedings of
                    48 (2018) 43–57.                            the National Academy of Sciences (2019)
                 28. J. McCarthy, Artificial intelligence, logic and  201821458.
                    formalizing common sense, in: Philosophical  39. B.Kim,V.C.Azevedo,N.Thuerey,T.Kim,M.Gross,
                    Logic and Artificial Intelligence, Springer, 1989,  B. Solenthaler, Deep Fluids: A Generative Network
                    pp. 161–190.                                for Parameterized Fluid Simulations, Computer
                 29. W.S. McCulloch, W. Pitts, A logical calculus of the  Graphics Forum, vol. 38, Wiley Online Library,
                    ideas immanent in nervous activity, The Bulletin  2019, pp. 59–70.
                    of Mathematical Biophysics 5 (4) (1943) 115–133.  40. R. Modrzejewski, T. Collins, A. Bartoli, A.
                 30. A. Krizhevsky, I. Sutskever, H. geoffrey e., “alex net,  Hostettler, J. Marescaux, Soft-body registration of
                    ”, Advances in Neural Information Processing  pre-operative 3d models to intra-operative rgbd
                    Systems 25 (2012) 1–9.                      partial body scans, in: International Conference
                 31. Y.Zheng,A.Barbu,B.Georgescu,M.Scheuering,  on Medical Image Computing and
                    D. Comaniciu, Four-chamber heart modeling and  Computer-Assisted Intervention, Springer, 2018,
                    automatic segmentation for 3-d cardiac ct   pp. 39–46.
   234   235   236   237   238   239   240   241   242   243   244