Page 238 - Artificial Intelligence for Computational Modeling of the Heart
P. 238

Bibliography 211




                     Bibliography






                       1. M. Grieves, Digital Twin: Manufacturing    Mastering the game of go with deep neural
                          Excellence Through Virtual Factory Replication,  networks and tree search, Nature 529 (7587) (2016)
                          White paper, 2014, pp. 1–7.                484.
                       2. E. Glaessgen, D. Stargel, The digital twin paradigm  12. A. Hodgkin, A. Huxley, A quantitative description
                          for future NASA and us air force vehicles, in: 53rd  of ion currents and its applications to conduction
                          AIAA/ASME/ASCE/AHS/ASC Structures,         and excitation in nerve membranes, Journal of
                          Structural Dynamics and Materials Conference  Physiology 117 (4) (1952) 500–544.
                          20th AIAA/ASME/AHS Adaptive Structures  13. K. Ten Tusscher, D. Noble, P.-J. Noble, A.V. Panfilov,
                          Conference 14th AIAA, 2012, p. 1818.       A model for human ventricular tissue, American
                       3. M. Andrychowicz,B.Baker,M.Chociej,R.       Journal of Physiology. Heart and Circulatory
                          Jozefowicz, B. McGrew, J. Pachocki, A. Petron, M.  Physiology 286 (4) (2004) H1573–H1589.
                          Plappert, G. Powell, A. Ray, et al., Learning  14. J.J. Rice, P.P. De Tombe, Approaches to modeling
                          dexterous in-hand manipulation, arXiv preprint,  crossbridges and calcium-dependent activation in
                          arXiv:1808.00177, 2018.                    cardiac muscle, Progress in Biophysics and
                       4. D. Comaniciu, K. Engel, B. Georgescu, T. Mansi,  Molecular Biology 85 (2–3) (2004) 179–195.
                          Shaping the Future Through Innovations: From  15. D.M. Bers, Cardiac excitation–contraction
                          Medical Imaging to Precision Medicine, 2016.  coupling, Nature 415 (6868) (2002) 198.
                                                                 16. D.A. Beard, Modeling of oxygen transport and
                       5. N.A. Trayanova, P.M. Boyle, P.P. Nikolov,  cellular energetics explains observations on in
                          Personalized imaging and modeling strategies for  vivo cardiac energy metabolism, PLoS
                          arrhythmia prevention and therapy, Current  Computational Biology 2 (9) (2006) e107.
                          Opinion in Biomedical Engineering 5 (2018)  17. C.M. Lloyd, J.R. Lawson, P.J. Hunter, P.F. Nielsen,
                          21–28.                                     The cellml model repository, Bioinformatics
                       6. E. Kayvanpour, T. Mansi, F. Sedaghat-Hamedani,  24 (18) (2008) 2122–2123.
                          A. Amr, D. Neumann, B. Georgescu, P. Seegerer, A.
                                                                 18. M. Sermesant, R. Chabiniok, P. Chinchapatnam, T.
                          Kamen, J. Haas,K.S.Frese,M.Irawati,E.Wirsz,V.
                                                                     Mansi, F. Billet, P. Moireau, J.-M. Peyrat, K. Wong, J.
                          King, S. Buss, D. Mereles, E. Zitron, A. Keller, H.A.  Relan, K. Rhode, et al., Patient-specific
                          Katus, D. Comaniciu, B. Meder, Towards     electromechanical models of the heart for the
                          personalized cardiology: multi-scale modeling of  prediction of pacing acute effects in crt: a
                          the failing heart, PLoS ONE 10 (7) (2015) 1–18.  preliminary clinical validation, Medical Image
                       7. P.J. Hunter, T.K. Borg, Integration from proteins to  Analysis 16 (1) (2012) 201–215.
                          organs: the physiome project, Nature Reviews.  19. A.Prakosa,H.J.Arevalo,D.Deng, P.M. Boyle, P.P.
                          Molecular Cell Biology 4 (3) (2003) 237.   Nikolov, H. Ashikaga, J.J. Blauer, E. Ghafoori, C.J.
                       8. H. Ashikaga, H. Arevalo, F. Vadakkumpadan, R.C.  Park, R.C. Blake, et al., Personalized virtual-heart
                          Blake III, J.D. Bayer, S. Nazarian, M.M. Zviman, H.  technology for guiding the ablation of
                          Tandri, R.D. Berger, H. Calkins, et al., Feasibility of  infarct-related ventricular tachycardia, Nature
                          image-based simulation to estimate ablation  Biomedical Engineering 2 (10) (2018) 732.
                          target in human ventricular arrhythmia, Heart  20. N. Cedilnik, J. Duchateau, R. Dubois, F. Sacher, P.
                          Rhythm 10 (8) (2013) 1109–1116.            Jaïs, H. Cochet, M. Sermesant, Fast personalized
                       9. A.W. Lee, C.M. Costa, M. Strocchi, C.A. Rinaldi,  electrophysiological models from computed
                          S.A. Niederer, Computational modeling for cardiac  tomography images for ventricular tachycardia
                          resynchronization therapy, Journal of      ablation planning, EP Europace 20 (suppl 3)
                          Cardiovascular Translational Research 11 (2)  (2018), iii94–iii101.
                          (2018) 92–108.                         21. P.M.Boyle,T.Zghaib, S. Zahid, R.L. Ali, D. Deng,
                      10. M.Tegmark,Life3.0:Being Humaninthe Ageof   W.H. Franceschi, J.B. Hakim, M.J. Murphy, A.
                          Artificial Intelligence, Knopf, 2017.       Prakosa, S.L. Zimmerman, et al., Computationally
                      11. D. Silver, A. Huang, C.J. Maddison, A. Guez, L.  guided personalized targeted ablation of
                          Sifre, G. Van Den Driessche, J. Schrittwieser, I.  persistent atrial fibrillation, Nature Biomedical
                          Antonoglou, V. Panneershelvam, M. Lanctot, et al.,  Engineering (2019) 1–10.
   233   234   235   236   237   238   239   240   241   242   243