Page 243 - Artificial Intelligence for Computational Modeling of the Heart
P. 243

216  Bibliography





                112. S. Dokos, B.H. Smaill, A.A. Young, I.J. LeGrice,  filtering from regional volumes, Medical Image
                    Shear properties of passive ventricular     Analysis 17 (7) (2013) 816–829.
                    myocardium, American Journal of Physiology.  122. Y. Aboelkassem, K.J. McCabe, G. Huber, M.
                    Heart and Circulatory Physiology 283 (6) (2002)  Regnier, J.A. McCammon, A.D. McCulloch, A
                    H2650–H2659.                                stochastic coarse-graining multiscale model of
                113. S.Göktepe,S.Acharya,J.Wong, E. Kuhl,       cardiac thin filament activation using Brownian
                    Computational modeling of passive myocardium,  and Langevin dynamics, Biophysical Journal
                    International Journal for Numerical Methods in  (2019).
                    Biomedical Engineering 27 (1) (2011) 1–12.  123. J.J. Rice, F. Wang, D.M. Bers, P.P. De Tombe,
                114. J. Guccione, A. McCulloch, Mechanics of active  Approximate model of cooperative activation and
                    contraction in cardiac muscle: part I—constitutive  crossbridge cycling in cardiac muscle using
                    relations for fiber stress that describe deactivation,  ordinary differential equations, Biophysical
                    Journal of Biomechanical Engineering 115 (1)  Journal 95 (5) (2008) 2368–2390.
                    (1993) 72–81.                          124. K. Tran, N.P. Smith, D.S. Loiselle, E.J. Crampin, A
                                                                metabolite-sensitive, thermodynamically
                115. S. Land, V. Gurev, S. Arens, C.M. Augustin, L.
                    Baron, R. Blake, C. Bradley, S. Castro, A. Crozier, M.  constrained model of cardiac cross-bridge cycling:
                    Favino, et al., Verification of cardiac mechanics  implications for force development during
                    software: benchmark problems and solutions for  ischemia, Biophysical Journal 98 (2) (2010)
                    testing active and passive material behaviour,  267–276.
                    Proceedings of the Royal Society A. Mathematical,  125. N.A. Trayanova, Whole-heart modeling:
                    Physical and Engineering Sciences 471 (2184)  applications to cardiac electrophysiology and
                    (2015) 20150641.                            electromechanics, Circulation Research 108 (1)
                                                                (2011) 113–128.
                116. P.J. Hunter, B.H. Smaill, The analysis of cardiac
                    function: a continuum approach, Progress in  126. J. Bestel, F. Clément, M. Sorine, A biomechanical
                    Biophysics and Molecular Biology 52 (2) (1988)  model of muscle contraction, in: International
                    101–164.                                    Conference on Medical Image Computing and
                                                                Computer-Assisted Intervention, Springer, 2001,
                117. S.A. Niederer, N.P. Smith, An improved numerical  pp. 1159–1161.
                    method for strong coupling of excitation and  127. T. Arts, P. Bovendeerd, F.W. Prinzen, R.S. Reneman,
                    contraction models in the heart, Progress in  Relation between left ventricular cavity pressure
                    Biophysics and Molecular Biology 96 (1–3) (2008)  and volume and systolic fiber stress and strain in
                    90–111.
                                                                the wall, Biophysical Journal 59 (1) (1991) 93–102.
                118. K.D. Costa, J.W. Holmes, A.D. McCulloch,
                                                           128. M. Caruel, R. Chabiniok, P. Moireau, Y.
                    Modelling cardiac mechanical properties in three
                                                                Lecarpentier, D. Chapelle, Dimensional reductions
                    dimensions, Philosophical Transactions of the  of a cardiac model for effective validation and
                    Royal Society of London. Series A: Mathematical,  calibration, Biomechanics and Modeling in
                    Physical and Engineering Sciences 359 (1783)  Mechanobiology 13 (4) (2014) 897–914.
                    (2001) 1233–1250.                      129. R.Molléro,X.Pennec, H. Delingette,A.Garny,N.
                119. H.Schmid, M. Nash,A.Young,P.Hunter,        Ayache, M. Sermesant, Multifidelity-cma: a
                    Myocardial material parameter estimation—a  multifidelity approach for efficient
                    comparative study for simple shear, Journal of  personalisation of 3d cardiac electromechanical
                    Biomechanical Engineering 128 (5) (2006)    models, Biomechanics and Modeling in
                    742–750.                                    Mechanobiology 17 (1) (2018) 285–300.
                120. G.A. Holzapfel, R.W. Ogden, Constitutive  130. D.M. McQueen, C.S. Peskin, A three-dimensional
                    modelling of passive myocardium: a structurally  computer model of the human heart for studying
                    based framework for material characterization,  cardiac fluid dynamics, ACM Siggraph Computer
                    Philosophical Transactions of the Royal Society of  Graphics 34 (1) (2000) 56–60.
                    London A: Mathematical, Physical and   131. V. Mihalef, R.I. Ionasec, P. Sharma, B. Georgescu, I.
                    Engineering Sciences 367 (1902) (2009) 3445–3475.  Voigt, M. Suehling, D. Comaniciu, Patient-specific
                121. S. Marchesseau, H. Delingette, M. Sermesant, R.  modelling of whole heart anatomy, dynamics and
                    Cabrera-Lozoya, C. Tobon-Gomez, P. Moireau, R.F.  haemodynamics from four-dimensional cardiac ct
                    i Ventura, K. Lekadir, A. Hernandez, M. Garreau, et  images, Interface Focus 1 (3) (2011) 286–296.
                    al., Personalization of a cardiac electromechanical  132. T. Arts, T. Delhaas, P. Bovendeerd, X. Verbeek, F.W.
                    model using reduced order unscented Kalman  Prinzen, Adaptation to mechanical load
   238   239   240   241   242   243   244   245   246   247   248