Page 244 - Artificial Intelligence for Computational Modeling of the Heart
P. 244
Bibliography 217
determines shape and properties of heart and G.B. Luciani, Comparative finite element model
circulation: the circadapt model, American analysis of ascending aortic flow in bicuspid and
Journal of Physiology. Heart and Circulatory tricuspid aortic valve, Artificial Organs 34 (12)
Physiology 288 (4) (2005) H1943–H1954. (2010) 1114–1120.
133. R.C. Kerckhoffs, M.L. Neal, Q. Gu, J.B. 143. A. Quaini, S. Canic, G. Guidoboni, R. Glowinski,
Bassingthwaighte, J.H. Omens, A.D. McCulloch, S.R. Igo, C.J. Hartley, W.A. Zoghbi, S.H. Little, A
Coupling of a 3d finite element model of cardiac three-dimensional computational fluid dynamics
ventricular mechanics to lumped systems models model of regurgitant mitral valve flow: validation
of the systemic and pulmonic circulation, Annals against in vitro standards and 3d color Doppler
of Biomedical Engineering 35 (1) (2007) 1–18. methods, Cardiovascular Engineering and
134. S. Niederer, K. Rhode, R. Razavi, N. Smith, The Technology 2 (2) (2011) 77–89.
importance of model parameters and boundary 144. A.Mitoh,T.Yano, K. Sekine,Y.Mitamura, E.
conditions in whole organ models of cardiac Okamoto, D.-W.Kim,R.Yozu, S. Kawada,
contraction, in: International Conference on Computational fluid dynamics analysis of an
Functional Imaging and Modeling of the Heart, intra-cardiac axial flow pump, Artificial Organs
Springer, 2009, pp. 348–356. 27 (1) (2003) 34–40.
135. T. Mansi, Image-Based Physiological and 145. Y. Bazilevs, J. Gohean, T. Hughes, R.D. Moser, Y.
Statistical Models of the Heart: Application to Zhang, Patient-specific isogeometric
Tetralogy of Fallot, PhD thesis, École Nationale fluid-structure interaction analysis of thoracic
Supérieure des Mines de Paris, 2010. aortic blood flow due to implantation of the jarvik
136. M.R. Pfaller, J.M. Hörmann, M. Weigl, A. Nagler, R. 2000 left ventricular assist device, Computer
Chabiniok, C. Bertoglio, W.A. Wall, The Methods in Applied Mechanics and Engineering
importance of the pericardium for cardiac 198 (45–46) (2009) 3534–3550.
biomechanics: from physiology to computational 146. K.H. Fraser, M.E. Taskin, B.P. Griffith, Z.J. Wu, The
modeling, Biomechanics and Modeling in use of computational fluid dynamics in the
Mechanobiology 18 (2) (2019) 503–529. development of ventricular assist devices, Medical
137. J. Hall, Guyton and Hall Textbook of Medical Engineering & Physics 33 (3) (2011) 263–280.
Physiology, 12th ed, Saunders Elsevier, 2011. 147. A.L.Marsden,A.J.Bernstein,V.M.Reddy,S.C.
138. G. Mancia, G. De Backer, A. Dominiczak, R. Shadden, R.L. Spilker, F.P. Chan, C.A. Taylor, J.A.
Cifkova, R. Fagard, G. Germano, G. Grassi, A.M. Feinstein, Evaluation of a novel y-shaped
Heagerty, S.E. Kjeldsen, S. Laurent, et al., 2007 extracardiac fontan baffle using computational
guidelines for the management of arterial fluid dynamics, Journal of Thoracic and
hypertension: the task force for the management Cardiovascular Surgery 137 (2) (2009) 394–403.
of arterial hypertension of the European society of 148. K.K. Whitehead, K. Pekkan, H.D. Kitajima, S.M.
hypertension (esh) and of the European society of Paridon, A.P. Yoganathan, M.A. Fogel, Nonlinear
cardiology (esc), European Heart Journal 28 (12) power loss during exercise in single-ventricle
(2007) 1462–1536. patients after the fontan: insights from
139. L.M. Ruilope, R.E. Schmieder, Left ventricular computational fluid dynamics, Circulation 116 (11
hypertrophy and clinical outcomes in supplement) (2007), I–165.
hypertensive patients, American Journal of 149. M.R.DeLeval,G.Dubini, H. Jalali,R.Pietrabissa,
Hypertension 21 (5) (2008) 500–508. et al., Use of computational fluid dynamics in the
140. Luca Formaggia, Alfio Quarteroni, Allesandro design of surgical procedures: application to the
Veneziani, Cardiovascular Mathematics: Modeling study of competitive flows in cavopulmonary
and simulation of the circulatory system, vol. 1, connections, The Journal of Thoracic and
Springer Science & Business Media, 2010. Cardiovascular Surgery 111 (3) (1996) 502–513.
141. Matteo Nobili, Umberto Morbiducci, Raffaele 150. L. Formaggia, D. Lamponi, M. Tuveri, A. Veneziani,
Ponzini, Costantino Del Gaudio, Antonio Balducci, Numerical modeling of 1d arterial networks
Mauro Grigioni, Franco Maria Montevecchi, coupled with a lumped parameters description of
Alberto Redaelli, Numerical simulation of the the heart, Computer Methods in Biomechanics
dynamics of a bileaflet prosthetic heart valve using and Biomedical Engineering 9 (5) (2006) 273–288.
a fluid–structure interaction approach, Journal of 151. L.M.Itu,P.Sharma, B. Georgescu, A. Kamen, C.
Biomechanics 41 (11) (2008) 2539–2550. Suciu, D. Comaniciu, Model based non-invasive
142. F. Viscardi, C. Vergara, L. Antiga, S. Merelli, A. estimation of pv loop from echocardiography, in:
Veneziani, G. Puppini,G.Faggian,A.Mazzucco, 2014 36th Annual International Conference of the