Page 249 - Artificial Intelligence for Computational Modeling of the Heart
P. 249

222  Bibliography





                    Dubini,G.Pennati,etal.,Predictivemodelingof  computational fluid dynamics, Annals of
                    the virtual hemi-fontan operation for second stage  Biomedical Engineering 31 (1) (2003) 42–52.
                    single ventricle palliation: two patient-specific  240. J.H. Seo, V. Vedula, T. Abraham, A.C. Lardo, F.
                    cases, Journal of Biomechanics 46 (2) (2013)  Dawoud,H.Luo,R.Mittal, Effect of themitral
                    423–429.                                    valve on diastolic flow patterns, Physics of Fluids
                231. C. Long, M.-C. Hsu, Y. Bazilevs, J. Feinstein, A.  26 (12) (2014) 121901.
                    Marsden, Fluid–structure interaction simulations  241. S. Hendabadi, J. Bermejo, Y. Benito, R. Yotti, F.
                    of the fontan procedure using variable wall  Fernández-Avilés, J.C. Del Álamo, S.C. Shadden,
                    properties, International Journal for Numerical  Topology of blood transport in the human left
                    Methods in Biomedical Engineering 28 (5) (2012)  ventricle by novel processing of Doppler
                    513–527.                                    echocardiography, Annals of Biomedical
                232. D. Sengupta, A.M. Kahn, J.C. Burns, S. Sankaran,  Engineering 41 (12) (2013) 2603–2616.
                    S.C. Shadden, A.L. Marsden, Image-based  242. R. Delewi, F. Zijlstra, J.J. Piek, Left ventricular
                    modeling of hemodynamics in coronary artery  thrombus formation after acute myocardial
                    aneurysms caused by Kawasaki disease,       infarction, Heart 98 (23) (2012) 1743–1749.
                    Biomechanics and Modeling in Mechanobiology  243. B.E. Griffith, X. Luo, D.M. McQueen, C.S. Peskin,
                    11 (6) (2012) 915–932.                      Simulating the fluid dynamics of natural and
                233. W.K. Liu, Y. Liu, D. Farrell, L. Zhang, X.S. Wang, Y.  prosthetic heart valves using the immersed
                    Fukui, N. Patankar,Y.Zhang,C.Bajaj,J.Lee,etal.,  boundary method, International Journal of
                    Immersed finite element method and its       Applied Mechanics 1 (01) (2009) 137–177.
                    applications to biological systems, Computer  244. V. Babaliaros, A. Cribier, C. Agatiello, Surgery
                    Methods in Applied Mechanics and Engineering  insight: current advances in percutaneous heart
                    195 (13–16) (2006) 1722–1749.               valve replacement and repair, Nature Reviews
                234. H. Watanabe, S. Sugiura, H. Kafuku, T. Hisada,  Cardiology 3 (5) (2006) 256.
                    Multiphysics simulation of left ventricular filling  245. M. Courtois, S.J. Kovács Jr, P. Ludbrook,
                    dynamics using fluid-structure interaction finite  Transmitral pressure-flow velocity relation.
                    element method, Biophysical Journal 87 (3) (2004)  importance of regional pressure gradients in the
                    2074–2085.                                  left ventricle during diastole, Circulation 78 (3)
                235. A.D. Pasipoularides, M. Shu, M.S. Womack, A.  (1988) 661–671.
                    Shah, O.Von Ramm,D.D.Glower, Rv functional  246. Y.Ishida, J. Meisner, K. Tsujioka,J.Gallo,C.Yoran,
                    imaging: 3-d echo-derived dynamic geometry and  R. Frater, E. Yellin, Left ventricular filling
                    flow field simulations, American Journal of   dynamics: influence of left ventricular relaxation
                    Physiology. Heart and Circulatory Physiology  and left atrial pressure, Circulation 74 (1) (1986)
                    284 (1) (2003) H56–H65.                     187–196.
                236. J.Nichols,S.Lele, P. Moin,F.Ham,G.Brès, J.  247. B.M. Yun, L. Dasi, C. Aidun, A. Yoganathan,
                    Bridges, Large-eddy simulation for supersonic  Computational modelling of flow through
                    rectangular jet noise prediction: effects of  prosthetic heart valves using the entropic
                    chevrons, in: 18th AIAA/CEAS Aeroacoustics  lattice-Boltzmann method, Journal of Fluid
                    Conference (33rd AIAA Aeroacoustics         Mechanics 743 (2014) 170–201.
                    Conference), 2012, p. 2212.            248. R. Mittal, G. Iaccarino, Immersed boundary
                237. T.Schenkel, M. Malve, M. Reik,M.Markl,B.Jung,  methods, Annual Review of Fluid Mechanics 37
                    H. Oertel, Mri-based cfd analysis of flow in a  (2005) 239–261.
                    human left ventricle: methodology and  249. C.S. Peskin, The immersed boundary method,
                    application to a healthy heart, Annals of   Acta Numerica 11 (2002) 479–517.
                    Biomedical Engineering 37 (3) (2009) 503–515.  250. C.S. Peskin, Numerical analysis of blood flow in
                238. Y.Cheng,H.Oertel, T. Schenkel, Fluid-structure  the heart, Journal of Computational Physics 25 (3)
                    coupled cfd simulation of the left ventricular flow  (1977) 220–252.
                    during filling phase, Annals of Biomedical  251. Y. Zang, R.L. Street, J.R. Koseff, A non-staggered
                    Engineering 33 (5) (2005) 567–576.          grid, fractional step method for time-dependent
                239. N.R. Saber, N.B. Wood, A. Gosman, R.D. Merrifield,  incompressible Navier–Stokes equations in
                    G.-Z. Yang, C.L. Charrier, P.D. Gatehouse, D.N.  curvilinear coordinates, Journal of Computational
                    Firmin, Progress towards patient-specific    Physics 114 (1) (1994) 18–33.
                    computational flow modeling of the left heart via  252. Dominique d’Humieres, Multiple-relaxation-time
                    combination of magnetic resonance imaging with  lattice Boltzmann models in three dimensions,
   244   245   246   247   248   249   250   251   252   253   254