Page 246 - Artificial Intelligence for Computational Modeling of the Heart
P. 246

Bibliography 219





                          with applications to arterial blood flow,   support show hemodynamic alterations in the
                          Computational Mechanics 38 (4–5) (2006)    ascending aorta, Journal of Thoracic and
                          310–322.                                   Cardiovascular Surgery 147 (4) (2014) 1326–1333.
                     173. C.A. Figueroa, I.E. Vignon-Clementel, K.E. Jansen,  183. R. Mittal, J.H. Seo, V. Vedula, Y.J. Choi, H. Liu, H.H.
                          T.J. Hughes, C.A. Taylor, A coupled momentum  Huang, S. Jain, L. Younes, T. Abraham, R.T. George,
                          method for modeling blood flow in           Computational modeling of cardiac
                          three-dimensional deformable arteries, Computer  hemodynamics: current status and future outlook,
                          Methods in Applied Mechanics and Engineering  Journal of Computational Physics 305 (2016)
                          195 (41–43) (2006) 5685–5706.              1065–1082.
                     174. P.Crosetto, P.Reymond,S.Deparis,D.Kontaxakis,  184. P.J. Kilner, G.-Z. Yang, A.J. Wilkes, R.H. Mohiaddin,
                          N. Stergiopulos, A. Quarteroni, Fluid–structure  D.N. Firmin, M.H. Yacoub, Asymmetric redirection
                          interaction simulation of aortic blood flow,  of flow through the heart, Nature 404 (6779) (2000)
                          Computers & Fluids 43 (1) (2011) 46–57.    759.
                     175. Dongbin Xiu, Didier Lucor, C.-H. Su, George Em  185. N.Stergiopulos, J.-J.Meister,N.Westerhof,Simple
                          Karniadakis, Stochastic modeling of flow-structure  and accurate way for estimating total and
                          interactions using generalized polynomial chaos,  segmental arterial compliance: the pulse pressure
                          Journal of Fluids Engineering 124 (1) (2001) 51–59.  method, Annals of Biomedical Engineering 22 (4)
                     176. Viorel Mihalef, Dimitris Metaxas, Mark Sussman,  (1994) 392–397.
                          Vassilios Hurmusiadis, Leon Axel, Atrioventricular  186. P. Segers, E. Rietzschel, M. De Buyzere, N.
                          blood flow simulation based on patient-specific  Stergiopulos, N. Westerhof, L. Van Bortel, T.
                          data, in: International Conference on Functional  Gillebert, P. Verdonck, Three-and four-element
                          Imaging and Modeling of the Heart, Springer,  windkessel models: assessment of their fitting
                          2009, pp. 386–395.                         performance in a large cohort of healthy
                     177. D.A. Steinman, C.A. Taylor, Flow imaging and  middle-aged individuals, Proceedings of the
                          computing: large artery hemodynamics, Annals of  Institution of Mechanical Engineers. Part H,
                          Biomedical Engineering 33 (12) (2005) 1704–1709.  Journal of Engineering in Medicine 222 (4) (2008)
                     178. J.M. Sohns, J.T. Kowallick, A.A. Joseph, K.D.  417–428.
                          Merboldt, D. Voit, M. Fasshauer, W. Staab, J.  187. M.J. Powell, The BOBYQA Algorithm for Bound
                          Frahm, J. Lotz, C. Unterberg-Buchwald, Peak flow  Constrained Optimization Without Derivatives,
                          velocities in the ascending aorta—real-time  Cambridge NA Report NA2009/06, 2009.
                          phase-contrast magnetic resonance imaging vs  188. K.C. Wong, M. Sermesant, K. Rhode, M. Ginks, C.A.
                          cine magnetic resonance imaging and        Rinaldi, R. Razavi, H. Delingette, N. Ayache,
                          echocardiography, Quantitative Imaging in  Velocity-based cardiac contractility
                          Medicine and Surgery 5 (5) (2015) 685.     personalization from images using derivative-free
                     179. J. Ryval, A. Straatman, D. Steinman, Two-equation  optimization, Journal of the Mechanical Behavior
                          turbulence modeling of pulsatile flow in a  of Biomedical Materials 43 (2015) 35–52.
                          stenosed tube, Journal of Biomechanical  189. L. Le Folgoc, H. Delingette, A. Criminisi, N.
                          Engineering 126 (5) (2004) 625–635.        Ayache, Current-based 4d shape analysis for the
                     180. F. Hellmeier, S. Nordmeyer, P. Yevtushenko, J.  mechanical personalization of heart models, in:
                          Bruening, F. Berger, T. Kuehne, L. Goubergrits, M.  International MICCAI Workshop on Medical
                          Kelm, Hemodynamic evaluation of a biological  Computer Vision, Springer, 2012, pp. 283–292.
                          and mechanical aortic valve prosthesis using  190. H. Gao, W. Li, L. Cai, C. Berry, X. Luo, Parameter
                          patient-specific mri-based cfd, Artificial Organs  estimation in a Holzapfel–Ogden law for healthy
                          42 (1) (2018) 49–57.                       myocardium, Journal of Engineering Mathematics
                     181. L. Ge, H.-L. Leo, F. Sotiropoulos, A.P. Yoganathan,  95 (1) (2015) 231–248.
                          Flow in a mechanical bileaflet heart valve at  191. M. Hadjicharalambous, L. Asner, R. Chabiniok, E.
                          laminar and near-peak systole flow rates: Cfd  Sammut,J.Wong, D. Peressutti,E.Kerfoot,A.King,
                          simulations and experiments, Journal of    J. Lee, R. Razavi, et al., Non-invasive model-based
                          Biomechanical Engineering 127 (5) (2005)   assessment of passive left-ventricular myocardial
                          782–797.                                   stiffness in healthy subjects and in patients with
                     182. C. Karmonik, S. Partovi, M. Loebe, B. Schmack, A.  non-ischemic dilated cardiomyopathy, Annals of
                          Weymann, A.B. Lumsden, M. Karck, A. Ruhparwar,  Biomedical Engineering 45 (3) (2017) 605–618.
                          Computational fluid dynamics in patients with  192. J.Xi, P. Lamata,S.Niederer, S. Land,W.Shi,X.
                          continuous-flow left ventricular assist device  Zhuang, S. Ourselin, S.G. Duckett, A.K. Shetty, C.A.
   241   242   243   244   245   246   247   248   249   250   251