Page 247 - Artificial Intelligence for Computational Modeling of the Heart
P. 247

220  Bibliography





                    Rinaldi, et al., The estimation of patient-specific  on Statistical Atlases and Computational Models
                    cardiac diastolic functions from clinical   of the Heart, Springer, 2010, pp. 281–290.
                    measurements, Medical Image Analysis 17 (2)  201. E. Konukoglu, J. Relan, U. Cilingir, B.H. Menze, P.
                    (2013) 133–146.                             Chinchapatnam, A. Jadidi, H. Cochet, M. Hocini,
                193. P. Chinchapatnam, K.S. Rhode, M. Ginks, C.A.  H. Delingette, P. Jaïs, M. Haïssaguerre, N. Ayache,
                    Rinaldi, P. Lambiase, R. Razavi, S. Arridge, M.  M. Sermesant, Efficient probabilistic model
                    Sermesant, Model-based imaging of cardiac   personalization integrating uncertainty on data
                    apparent conductivity and local conduction  and parameters: application to Eikonal-diffusion
                    velocity for diagnosis and planning of therapy,  models in cardiac electrophysiology, Progress in
                    IEEE Transactions on Medical Imaging 27 (11)  Biophysics and Molecular Biology 107 (1) (2011)
                    (2008) 1631–1642.                           134–146.
                194. J. Relan, P. Chinchapatnam, M. Sermesant, K.  202. B. Georgescu, X.S. Zhou, D. Comaniciu, A. Gupta,
                    Rhode, M. Ginks, H. Delingette, C.A. Rinaldi, R.  Database-Guided Segmentation of Anatomical
                    Razavi, N. Ayache, Coupled personalization of  Structures With Complex Appearance, 2005 IEEE
                    cardiac electrophysiology models for prediction of  Computer Society Conference on Computer
                    ischaemic ventricular tachycardia, Interface Focus  Vision and Pattern Recognition (CVPR’05), vol. 2,
                    1 (3) (2011) 396–407.                       IEEE, 2005, pp. 429–436.
                195. P. Seegerer, T. Mansi, M.-P. Jolly, D. Neumann, B.  203. Z. Tu, Probabilistic boosting-tree: learning
                    Georgescu, A. Kamen, E. Kayvanpour, A. Amr, F.  discriminative models for classification,
                    Sedaghat-Hamedani, J. Haas, H. Katus, B. Meder,  recognition, and clustering, in: Proceedings of the
                    D. Comaniciu, Estimation of regional electrical  IEEE International Conference on Computer
                    properties of the heart from 12-lead ECG and  Vision, IEEE Computer Society, 2005,
                    images, in: Statistical Atlases and Computational  pp. 1589–1596.
                    Models of the Heart – Imaging and Modelling  204. R.H. Anderson, Clinical anatomy of the aortic root,
                    Challenges, in: LNCS, vol. 8896, Springer, 2015,  Heart 84 (6) (2000) 670–673.
                    pp. 204–212.                           205. C. Stamm, R.H. Anderson, S.Y. Ho, Clinical
                196. H. Delingette, F. Billet, K.C. Wong, M. Sermesant,  anatomy of the normal pulmonary root compared
                    K. Rhode, M. Ginks, C.A. Rinaldi, R. Razavi, N.  with that in isolated pulmonary valvular stenosis,
                    Ayache, Personalization of cardiac motion and  Journal of the American College of Cardiology
                    contractility from images using variational data  31 (6) (1998) 1420–1425.
                    assimilation, IEEE Transactions on Biomedical  206. A.H.A.W.G. on Myocardial Segmentation, R. for
                    Engineering 59 (1) (2011) 20–24.            Cardiac Imaging, M.D. Cerqueira, N.J. Weissman,
                197. P.Moireau,D.Chapelle,P.LeTallec, Jointstate and  V. Dilsizian, A.K. Jacobs, S. Kaul, W.K. Laskey, D.J.
                    parameter estimation for distributed mechanical  Pennell, J.A. Rumberger, T. Ryan, et al.,
                    systems, Computer Methods in Applied        Standardized myocardial segmentation and
                    Mechanics and Engineering 197 (6–8) (2008)  nomenclature for tomographic imaging of the
                    659–677.                                    heart: a statement for healthcare professionals
                198. R.Chabiniok,P.Moireau,P.-F. Lesault, A.    from the cardiac imaging committee of the council
                    Rahmouni, J.-F. Deux, D. Chapelle, Estimation of  on clinical cardiology of the American heart
                    tissue contractility from cardiac cine-mri using a  association, Circulation 105 (4) (2002) 539–542.
                    biomechanical heart model, Biomechanics and  207. V. Arsigny, P. Fillard, X. Pennec, N. Ayache,
                    Modeling in Mechanobiology 11 (5) (2012)    Log-Euclidean metrics for fast and simple calculus
                    609–630.                                    on diffusion tensors, Magnetic Resonance in
                199. A. Prakosa, M. Sermesant, P. Allain, N. Villain, C.A.  Medicine: An Official Journal of the International
                    Rinaldi, K. Rhode, R. Razavi, H. Delingette, N.  Society for Magnetic Resonance in Medicine 56 (2)
                    Ayache, Cardiac electrophysiological activation  (2006) 411–421.
                    pattern estimation from images using a  208. A.J. Pullan, L.K. Cheng, M.L. Buist, Mathematically
                    patient-specific database of synthetic image  Modeling the Electrical Activity of the Heart: From
                    sequences, IEEE Transactions on Biomedical  Cell to Body Surface and Back, World Scientific
                    Engineering 61 (2) (2013) 235–245.          Publishing Company, 2005.
                200. O. Camara, A. Pashaei, R. Sebastian, A.F. Frangi,  209. R.Clayton,O.Bernus, E. Cherry,H.Dierckx,F.
                    Personalization of fast conduction Purkinje system  Fenton,L.Mirabella, A.Panfilov,F.Sachse, G.
                    in Eikonal-based electrophysiological models with  Seemann, H. Zhang, Models of cardiac tissue
                    optical mapping data, in: International Workshop  electrophysiology: progress, challenges and open
   242   243   244   245   246   247   248   249   250   251   252