Page 252 - Artificial Intelligence for Computational Modeling of the Heart
P. 252
Bibliography 225
Computer-Assisted Intervention, Springer, 2017, 314. V.G. Ng, A.J. Lansky, Novel qca methodologies and
pp. 279–286. angiographic scores, The International Journal of
301. Z.Cui,S.Xiao, J. Feng,S.Yan,Recurrently Cardiovascular Imaging 27 (2) (2011) 157–165.
target-attending tracking, in: Proceedings of the 315. L. Itu, P. Sharma, V. Mihalef, A. Kamen, C. Suciu, D.
IEEE Conference on Computer Vision and Pattern Lomaniciu, A patient-specific reduced-order
Recognition, 2016, pp. 1449–1458. model for coronary circulation, in: Biomedical
302. P. Ondruska, I. Posner, Deep tracking: seeing Imaging (ISBI), 2012 9th IEEE International
beyond seeing using recurrent neural networks, Symposium on, IEEE, 2012, pp. 832–835.
arXiv preprint, arXiv:1602.00991, 2016. 316. W.B. Meijboom, C.A. Van Mieghem, N. van Pelt, A.
303. S.E. Kahou, V. Michalski, R. Memisevic, Ratm: Weustink, F. Pugliese, N.R. Mollet, E. Boersma, E.
recurrent attentive tracking model, in: Proc. IEEE Regar, R.J. van Geuns, P.J. de Jaegere, et al.,
Conf. Comput. Vis. Pattern Recognit. Workshops, Comprehensive assessment of coronary artery
2015, pp. 1613–1622. stenoses: computed tomography coronary
304. Q.Gan,Q.Guo,Z.Zhang,K.Cho,First step toward angiography versus conventional coronary
model-free, anonymous object tracking with angiography and correlation with fractional flow
recurrent neural networks, arXiv preprint, reserve in patients with stable angina, Journal of
arXiv:1511.06425, 2015. the American College of Cardiology 52 (8) (2008)
305. G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. 636–643.
Cai, Z. He, Spatially supervised recurrent 317. N.H. Pijls, Fractional flow reserve after previous
convolutional neural networks for visual object myocardial infarction, European Heart Journal
tracking, in: Circuits and Systems (ISCAS), 2017 28 (19) (2007) 2301–2302.
IEEE International Symposium on, IEEE, 2017, 318. P.A. Tonino, B. De Bruyne, N.H. Pijls, U. Siebert, F.
pp. 1–4. Ikeno, M. vant Veer, V. Klauss, G. Manoharan, T.
306. D. Zhang, H. Maei, X. Wang, Y.-F. Wang, Deep Engstrøm,K.G.Oldroyd,etal.,Fractionalflow
reinforcement learning for visual object tracking reserve versus angiography for guiding
in videos, arXiv preprint, arXiv:1701.08936, 2017.
307. J. Choi, J. Kwon, K.M. Lee, Visual tracking by percutaneous coronary intervention, The New
reinforced decision making, arXiv preprint, England Journal of Medicine 360 (3) (2009)
arXiv:1702.06291, 2017. 213–224.
308. C. Huang, S. Lucey, D. Ramanan, Learning policies 319. S.D. Fihn, J.M. Gardin, J. Abrams, K. Berra, J.C.
for adaptive tracking with deep feature cascades, Blankenship, P.S. Douglas, J.M. Foody, T.C. Gerber,
in: IEEE Int. Conf. on Computer Vision (ICCV), A.L. Hinderliter, S.B. King, et al., 2012
2017, pp. 105–114. accf/aha/acp/aats/pcna/scai/sts guideline for the
diagnosis and management of patients with stable
309. S.Yun,J.Choi, Y. Yoo, K. Yun, J. YoungChoi,
ischemic heart disease: a report of the American
Action-decision networks for visual tracking with
college of cardiology foundation/American heart
deep reinforcement learning, in: Proceedings of
the IEEE Conference on Computer Vision and association task force on practice guidelines, and
Pattern Recognition, 2017, pp. 2711–2720. the American college of physicians, American
310. L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, association for thoracic surgery, preventive
P.H. Torr, Staple: complementary learners for cardiovascular nurses association, society for
real-time tracking, in: Proceedings of the IEEE cardiovascular angiography and interventions,
Conference on Computer Vision and Pattern and society of thoracic surgeons, Journal of the
Recognition, 2016, pp. 1401–1409. American College of Cardiology 60 (24) (2012)
311. J.F. Henriques, R. Caseiro, P. Martins, J. Batista, e44–e164.
High-speed tracking with kernelized correlation 320. A.F.members,S.Windecker,P.Kolh, F. Alfonso, J.-P.
filters, IEEE Transactions on Pattern Analysis and Collet, J. Cremer, V. Falk, G. Filippatos, C. Hamm,
Machine Intelligence 37 (3) (2015) 583–596. S.J. Head, et al., 2014 esc/eacts guidelines on
312. H.K. Galoogahi, A. Fagg, S. Lucey, Learning myocardial revascularization: the task force on
background-aware correlation filters for visual myocardial revascularization of the European
tracking, in: ICCV, vol. 3, 2017, p. 4. society of cardiology (esc) and the European
313. Y.Song, C. Ma,X.Wu, L. Gong,L.Bao,W.Zuo,C. association for cardio-thoracic surgery (eacts)
Shen, R.W. Lau, M.-H. Yang, Vital: visual tracking developed with the special contribution of the
via adversarial learning, in: Proceedings of the European association of percutaneous
IEEE Conference on Computer Vision and Pattern cardiovascular interventions (eapci), European
Recognition, 2018, pp. 8990–8999. Heart Journal 35 (37) (2014) 2541–2619.