Page 252 - Artificial Intelligence for Computational Modeling of the Heart
P. 252

Bibliography 225





                          Computer-Assisted Intervention, Springer, 2017,  314. V.G. Ng, A.J. Lansky, Novel qca methodologies and
                          pp. 279–286.                               angiographic scores, The International Journal of
                     301. Z.Cui,S.Xiao, J. Feng,S.Yan,Recurrently    Cardiovascular Imaging 27 (2) (2011) 157–165.
                          target-attending tracking, in: Proceedings of the  315. L. Itu, P. Sharma, V. Mihalef, A. Kamen, C. Suciu, D.
                          IEEE Conference on Computer Vision and Pattern  Lomaniciu, A patient-specific reduced-order
                          Recognition, 2016, pp. 1449–1458.          model for coronary circulation, in: Biomedical
                     302. P. Ondruska, I. Posner, Deep tracking: seeing  Imaging (ISBI), 2012 9th IEEE International
                          beyond seeing using recurrent neural networks,  Symposium on, IEEE, 2012, pp. 832–835.
                          arXiv preprint, arXiv:1602.00991, 2016.  316. W.B. Meijboom, C.A. Van Mieghem, N. van Pelt, A.
                     303. S.E. Kahou, V. Michalski, R. Memisevic, Ratm:  Weustink, F. Pugliese, N.R. Mollet, E. Boersma, E.
                          recurrent attentive tracking model, in: Proc. IEEE  Regar, R.J. van Geuns, P.J. de Jaegere, et al.,
                          Conf. Comput. Vis. Pattern Recognit. Workshops,  Comprehensive assessment of coronary artery
                          2015, pp. 1613–1622.                       stenoses: computed tomography coronary
                     304. Q.Gan,Q.Guo,Z.Zhang,K.Cho,First step toward  angiography versus conventional coronary
                          model-free, anonymous object tracking with  angiography and correlation with fractional flow
                          recurrent neural networks, arXiv preprint,  reserve in patients with stable angina, Journal of
                          arXiv:1511.06425, 2015.                    the American College of Cardiology 52 (8) (2008)
                     305. G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C.  636–643.
                          Cai, Z. He, Spatially supervised recurrent  317. N.H. Pijls, Fractional flow reserve after previous
                          convolutional neural networks for visual object  myocardial infarction, European Heart Journal
                          tracking, in: Circuits and Systems (ISCAS), 2017  28 (19) (2007) 2301–2302.
                          IEEE International Symposium on, IEEE, 2017,  318. P.A. Tonino, B. De Bruyne, N.H. Pijls, U. Siebert, F.
                          pp. 1–4.                                   Ikeno, M. vant Veer, V. Klauss, G. Manoharan, T.
                     306. D. Zhang, H. Maei, X. Wang, Y.-F. Wang, Deep  Engstrøm,K.G.Oldroyd,etal.,Fractionalflow
                          reinforcement learning for visual object tracking  reserve versus angiography for guiding
                          in videos, arXiv preprint, arXiv:1701.08936, 2017.
                     307. J. Choi, J. Kwon, K.M. Lee, Visual tracking by  percutaneous coronary intervention, The New
                          reinforced decision making, arXiv preprint,  England Journal of Medicine 360 (3) (2009)
                          arXiv:1702.06291, 2017.                    213–224.
                     308. C. Huang, S. Lucey, D. Ramanan, Learning policies  319. S.D. Fihn, J.M. Gardin, J. Abrams, K. Berra, J.C.
                          for adaptive tracking with deep feature cascades,  Blankenship, P.S. Douglas, J.M. Foody, T.C. Gerber,
                          in: IEEE Int. Conf. on Computer Vision (ICCV),  A.L. Hinderliter, S.B. King, et al., 2012
                          2017, pp. 105–114.                         accf/aha/acp/aats/pcna/scai/sts guideline for the
                                                                     diagnosis and management of patients with stable
                     309. S.Yun,J.Choi, Y. Yoo, K. Yun, J. YoungChoi,
                                                                     ischemic heart disease: a report of the American
                          Action-decision networks for visual tracking with
                                                                     college of cardiology foundation/American heart
                          deep reinforcement learning, in: Proceedings of
                          the IEEE Conference on Computer Vision and  association task force on practice guidelines, and
                          Pattern Recognition, 2017, pp. 2711–2720.  the American college of physicians, American
                     310. L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik,  association for thoracic surgery, preventive
                          P.H. Torr, Staple: complementary learners for  cardiovascular nurses association, society for
                          real-time tracking, in: Proceedings of the IEEE  cardiovascular angiography and interventions,
                          Conference on Computer Vision and Pattern  and society of thoracic surgeons, Journal of the
                          Recognition, 2016, pp. 1401–1409.          American College of Cardiology 60 (24) (2012)
                     311. J.F. Henriques, R. Caseiro, P. Martins, J. Batista,  e44–e164.
                          High-speed tracking with kernelized correlation  320. A.F.members,S.Windecker,P.Kolh, F. Alfonso, J.-P.
                          filters, IEEE Transactions on Pattern Analysis and  Collet, J. Cremer, V. Falk, G. Filippatos, C. Hamm,
                          Machine Intelligence 37 (3) (2015) 583–596.  S.J. Head, et al., 2014 esc/eacts guidelines on
                     312. H.K. Galoogahi, A. Fagg, S. Lucey, Learning  myocardial revascularization: the task force on
                          background-aware correlation filters for visual  myocardial revascularization of the European
                          tracking, in: ICCV, vol. 3, 2017, p. 4.    society of cardiology (esc) and the European
                     313. Y.Song, C. Ma,X.Wu, L. Gong,L.Bao,W.Zuo,C.  association for cardio-thoracic surgery (eacts)
                          Shen, R.W. Lau, M.-H. Yang, Vital: visual tracking  developed with the special contribution of the
                          via adversarial learning, in: Proceedings of the  European association of percutaneous
                          IEEE Conference on Computer Vision and Pattern  cardiovascular interventions (eapci), European
                          Recognition, 2018, pp. 8990–8999.          Heart Journal 35 (37) (2014) 2541–2619.
   247   248   249   250   251   252   253   254   255   256   257