Page 256 - Artificial Intelligence for Computational Modeling of the Heart
P. 256

Bibliography 229





                          modeling: perspectives, challenges, and    multi-physics model personalization: application
                          opportunities in the biological, biomedical, and  to heart modeling, in: International Conference on
                          behavioral sciences, arXiv preprint,       Medical Image Computing and
                          arXiv:1910.01258, 2019.                    Computer-Assisted Intervention, in: LNCS,
                     377. R.M. Gulrajani, The forward and inverse problems  vol. 9350, Springer, 2015, pp. 442–449.
                          of electrocardiography, IEEE Engineering in  387. L.Itu,P.Sharma, B. Georgescu, A. Kamen, C.
                          Medicine and Biology Magazine 17 (5) (1998)  Suciu, D. Comaniciu, Model-based non-invasive
                          84–101.                                    estimation of pv loop from echocardiography, in:
                     378. R.Modre,B.Tilg, G. Fischer, P. Wach,Noninvasive  36th Annual International Conference of the IEEE
                          myocardial activation time imaging: a novel  Engineering in Medicine and Biology Society,
                          inverse algorithm applied to clinical ecg mapping  IEEE, 2014, pp. 6774–6777.
                          data, IEEE Transactions on Bio-Medical  388. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright,
                          Engineering 49 (10) (2002) 1153–1161.      Convergence properties of the Nelder-Mead
                     379. O. Dössel, M.W. Krueger, F.M. Weber, C. Schilling,  simplex method in low dimensions, SIAM Journal
                          W.H. Schulze, G. Seemann, A framework for  on Optimization 9 (1) (1998) 112–147.
                          personalization of computational models of the  389. J. Cohn, Pathophysiology and clinical recognition
                          human atria, in: Engineering in Medicine and  of heart failure, in: Cardiovascular Medicine,
                          Biology Society, EMBC, 2011 Annual International  Springer, 2007, pp. 1379–1396.
                          Conference of the IEEE, IEEE, 2011, pp. 4324–4328.  390. G. Fonarow, Risk stratification models and
                     380. D. Neumann, T. Mansi, S. Grbic, I. Voigt, B.  predictors of mortality in acute heart failure
                          Georgescu, E. Kayvanpour, A. Amr, F.       syndromes, based on United States registries, in:
                          Sedaghat-Hamedani, J. Haas, H. Katus, B. Meder, J.  A. Mebazaa, M. Gheorghiade, F. Zannad, J. Parrillo
                          Hornegger, A. Kamen, D. Comaniciu, Automatic  (Eds.), Acute Heart Failure, Springer London,
                          image-to-model framework for patient-specific  London, 2008, pp. 7–12.
                          electromechanical modeling of the heart, in: IEEE  391. V. Kutyifa, A. Kosztin, H.U. Klein, Y. Biton, V.K.
                          International Symposium on Biomedical Imaging,  Nagy, S.D. Solomon, S. McNitt, W. Zareba, I.
                          2014, pp. 935–938.
                     381. M.Jiang,J.Lv, C. Wang,W.Huang,L.Xia,G.Shou,  Goldenberg, A. Roka, et al., Left ventricular lead
                                                                     location and long-term outcomes in cardiac
                          A hybrid model of maximum margin clustering  resynchronization therapy patients, JACC: Clinical
                          method and support vector regression for solving  Electrophysiology 4 (11) (2018) 1410–1420.
                          the inverse ECG problem, in: Computing in
                          Cardiology, 2011, IEEE, 2011, pp. 457–460.  392. R. Van Bommel, J. Bax, W. Abraham, E. Chung, L.
                                                                     Pires, L. Tavazzi,P.Zimetbaum,B.Gerritse, N.
                     382. T. Hastie, R. Tibshirani, J. Friedman, The Elements
                                                                     Kristiansen, S. Ghio, Characteristics of heart
                          of Statistical Learning: Data Mining, Inference,
                          and Prediction, Springer, 2009.            failure patients associated with good and poor
                     383. G.Litjens,T.Kooi,B.E. Bejnordi,A.A.A.Setio,F.  response to cardiac resynchronization therapy: a
                          Ciompi, M. Ghafoorian, J.A. van der Laak, B. van  prospect (predictors of response to crt)
                          Ginneken, C.I. Sánchez, A survey on deep learning  sub-analysis, European Heart Journal 30 (20)
                          in medical image analysis, arXiv:1702.05747, 2017.  (2009) 2470–2477.
                     384. D. Neumann, T. Mansi, L. Itu, B. Georgescu, E.  393. D. Lustgarten, S. Calame, E. Crespo, J. Calame, R.
                          Kayvanpour, F. Sedaghat-Hamedani, A. Amr, J.  Lobel, P.S. Spector, Electrical resynchronization
                          Haas, H. Katus, B. Meder, S. Steidl, J. Hornegger, D.  induced by direct his-bundle pacing, Heart
                          Comaniciu, A self-taught artificial agent for  Rhythm 7 (Jan 2010) 15–21.
                          multi-physics computational model      394. D. Kass, Cardiac resynchronization therapy,
                          personalization, Medical Image Analysis 34 (Dec.  Journal of Cardiovascular Electrophysiology
                          2016) 52–64.                               16 (s1) (2015) S35–S41.
                     385. B. Kveton, G. Theocharous, Kernel-based  395. E.Donal,V.Delgado,J.Magne,C.
                          reinforcement learning on representative states,  Bucciarelli-Ducci, C. Leclercq, B. Cosyns, M.
                          in: Association for the Advancement of Artificial  Sitges, T. Edvardsen, E. Sade, I. Stankovic, et al.,
                          Intelligence, 2012, pp. 977–983.           Rational and design of eurocrt: an international
                     386. D. Neumann, T. Mansi, L. Itu, B. Georgescu, E.  observational study on multi-modality imaging
                          Kayvanpour, F. Sedaghat-Hamedani, J. Haas, H.  and cardiac resynchronization therapy, European
                          Katus, B. Meder, S. Steidl, J. Hornegger, D.  Heart Journal-Cardiovascular Imaging 18 (10)
                          Comaniciu, Vito – a generic agent for      (2017) 1120–1127.
   251   252   253   254   255   256   257   258   259   260   261