Page 256 - Artificial Intelligence for Computational Modeling of the Heart
P. 256
Bibliography 229
modeling: perspectives, challenges, and multi-physics model personalization: application
opportunities in the biological, biomedical, and to heart modeling, in: International Conference on
behavioral sciences, arXiv preprint, Medical Image Computing and
arXiv:1910.01258, 2019. Computer-Assisted Intervention, in: LNCS,
377. R.M. Gulrajani, The forward and inverse problems vol. 9350, Springer, 2015, pp. 442–449.
of electrocardiography, IEEE Engineering in 387. L.Itu,P.Sharma, B. Georgescu, A. Kamen, C.
Medicine and Biology Magazine 17 (5) (1998) Suciu, D. Comaniciu, Model-based non-invasive
84–101. estimation of pv loop from echocardiography, in:
378. R.Modre,B.Tilg, G. Fischer, P. Wach,Noninvasive 36th Annual International Conference of the IEEE
myocardial activation time imaging: a novel Engineering in Medicine and Biology Society,
inverse algorithm applied to clinical ecg mapping IEEE, 2014, pp. 6774–6777.
data, IEEE Transactions on Bio-Medical 388. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright,
Engineering 49 (10) (2002) 1153–1161. Convergence properties of the Nelder-Mead
379. O. Dössel, M.W. Krueger, F.M. Weber, C. Schilling, simplex method in low dimensions, SIAM Journal
W.H. Schulze, G. Seemann, A framework for on Optimization 9 (1) (1998) 112–147.
personalization of computational models of the 389. J. Cohn, Pathophysiology and clinical recognition
human atria, in: Engineering in Medicine and of heart failure, in: Cardiovascular Medicine,
Biology Society, EMBC, 2011 Annual International Springer, 2007, pp. 1379–1396.
Conference of the IEEE, IEEE, 2011, pp. 4324–4328. 390. G. Fonarow, Risk stratification models and
380. D. Neumann, T. Mansi, S. Grbic, I. Voigt, B. predictors of mortality in acute heart failure
Georgescu, E. Kayvanpour, A. Amr, F. syndromes, based on United States registries, in:
Sedaghat-Hamedani, J. Haas, H. Katus, B. Meder, J. A. Mebazaa, M. Gheorghiade, F. Zannad, J. Parrillo
Hornegger, A. Kamen, D. Comaniciu, Automatic (Eds.), Acute Heart Failure, Springer London,
image-to-model framework for patient-specific London, 2008, pp. 7–12.
electromechanical modeling of the heart, in: IEEE 391. V. Kutyifa, A. Kosztin, H.U. Klein, Y. Biton, V.K.
International Symposium on Biomedical Imaging, Nagy, S.D. Solomon, S. McNitt, W. Zareba, I.
2014, pp. 935–938.
381. M.Jiang,J.Lv, C. Wang,W.Huang,L.Xia,G.Shou, Goldenberg, A. Roka, et al., Left ventricular lead
location and long-term outcomes in cardiac
A hybrid model of maximum margin clustering resynchronization therapy patients, JACC: Clinical
method and support vector regression for solving Electrophysiology 4 (11) (2018) 1410–1420.
the inverse ECG problem, in: Computing in
Cardiology, 2011, IEEE, 2011, pp. 457–460. 392. R. Van Bommel, J. Bax, W. Abraham, E. Chung, L.
Pires, L. Tavazzi,P.Zimetbaum,B.Gerritse, N.
382. T. Hastie, R. Tibshirani, J. Friedman, The Elements
Kristiansen, S. Ghio, Characteristics of heart
of Statistical Learning: Data Mining, Inference,
and Prediction, Springer, 2009. failure patients associated with good and poor
383. G.Litjens,T.Kooi,B.E. Bejnordi,A.A.A.Setio,F. response to cardiac resynchronization therapy: a
Ciompi, M. Ghafoorian, J.A. van der Laak, B. van prospect (predictors of response to crt)
Ginneken, C.I. Sánchez, A survey on deep learning sub-analysis, European Heart Journal 30 (20)
in medical image analysis, arXiv:1702.05747, 2017. (2009) 2470–2477.
384. D. Neumann, T. Mansi, L. Itu, B. Georgescu, E. 393. D. Lustgarten, S. Calame, E. Crespo, J. Calame, R.
Kayvanpour, F. Sedaghat-Hamedani, A. Amr, J. Lobel, P.S. Spector, Electrical resynchronization
Haas, H. Katus, B. Meder, S. Steidl, J. Hornegger, D. induced by direct his-bundle pacing, Heart
Comaniciu, A self-taught artificial agent for Rhythm 7 (Jan 2010) 15–21.
multi-physics computational model 394. D. Kass, Cardiac resynchronization therapy,
personalization, Medical Image Analysis 34 (Dec. Journal of Cardiovascular Electrophysiology
2016) 52–64. 16 (s1) (2015) S35–S41.
385. B. Kveton, G. Theocharous, Kernel-based 395. E.Donal,V.Delgado,J.Magne,C.
reinforcement learning on representative states, Bucciarelli-Ducci, C. Leclercq, B. Cosyns, M.
in: Association for the Advancement of Artificial Sitges, T. Edvardsen, E. Sade, I. Stankovic, et al.,
Intelligence, 2012, pp. 977–983. Rational and design of eurocrt: an international
386. D. Neumann, T. Mansi, L. Itu, B. Georgescu, E. observational study on multi-modality imaging
Kayvanpour, F. Sedaghat-Hamedani, J. Haas, H. and cardiac resynchronization therapy, European
Katus, B. Meder, S. Steidl, J. Hornegger, D. Heart Journal-Cardiovascular Imaging 18 (10)
Comaniciu, Vito – a generic agent for (2017) 1120–1127.