Page 253 - Artificial Intelligence for Computational Modeling of the Heart
P. 253
226 Bibliography
321. S. Tu, C.V. Bourantas, B.L. Nørgaard, G.S. Kassab, 328. M. Renker, U.J. Schoepf, R. Wang, F.G. Meinel, J.D.
B.-K. Koo, J. Reiber, Image-based assessment of Rier, R.R. Bayer II, H. Möllmann, C.W. Hamm, D.H.
fractional flow reserve, EuroIntervention: Journal Steinberg, S. Baumann, Comparison of diagnostic
of EuroPCR in Collaboration with the Working value of a novel noninvasive coronary computed
Group on Interventional Cardiology of the tomography angiography method versus standard
European Society of Cardiology 11 (2015), V50–4. coronary angiography for assessing fractional flow
322. A.Coenen, M.M. Lubbers,A.Kurata, A. Kono,A. reserve, American Journal of Cardiology 114 (9)
Dedic, R.G. Chelu, M.L. Dijkshoorn, F.J. Gijsen, M. (2014) 1303–1308.
Ouhlous, R.-J.M. van Geuns, et al., Fractional flow 329. S. Tu, E. Barbato, Z. Köszegi, J. Yang, Z. Sun, N.R.
reserve computed from noninvasive ct Holm,B.Tar,Y.Li, D. Rusinaru,W.Wijns,etal.,
angiography data: diagnostic performance of an Fractional flow reserve calculation from
on-site clinician-operated computational fluid 3-dimensional quantitative coronary angiography
dynamics algorithm, Radiology 274 (3) (2014) and timi frame count: a fast computer model to
674–683. quantify the functional significance of moderately
obstructed coronary arteries, JACC:
323. B.-K. Koo, H.-M. Yang, J.-H. Doh, H. Choe, S.-Y.
Lee, C.-H. Yoon, Y.-K. Cho, C.-W. Nam, S.-H. Hur, Cardiovascular Interventions 7 (7) (2014) 768–777.
H.-S. Lim, et al., Optimal intravascular ultrasound 330. S.-B. Deng, X.-D. Jing, J. Wang, C. Huang, S. Xia,
criteria and their accuracy for defining the J.-L. Du, Y.-J. Liu, Q. She, Diagnostic performance
functional significance of intermediate coronary of noninvasive fractional flow reserve derived from
stenoses of different locations, JACC: coronary computed tomography angiography in
Cardiovascular Interventions 4 (7) (2011) 803–811. coronary artery disease: a systematic review and
meta-analysis, International Journal of Cardiology
324. J.K. Min, J. Leipsic, M.J. Pencina, D.S. Berman, 184 (2015) 703–709.
B.-K. Koo, C. van Mieghem, A. Erglis, F.Y. Lin, A.M. 331. C.M. Bishop, Pattern Recognition and Machine
Dunning,P.Apruzzese,etal.,Diagnosticaccuracy Learning, vol. 4, Springer New York, Berlin,
of fractional flow reserve from anatomic ct Heidelberg, 2006.
angiography, JAMA 308 (12) (2012) 1237–1245.
332. M.Zamir,P.Sinclair, T.H. Wonnacott, Relation
325. P.D. Morris, D. Ryan, A.C. Morton, R. Lycett, P.V. between diameter and flow in major branches of
Lawford, D.R. Hose, J.P. Gunn, Virtual fractional the arch of the aorta, Journal of Biomechanics
flow reserve from coronary angiography: 25 (11) (1992) 1303–1310.
modeling the significance of coronary lesions: 333. K. Tøndel, U.G. Indahl, A.B. Gjuvsland, J.O. Vik, P.
results from the virtu-1 (virtual fractional flow
Hunter, S.W. Omholt, H. Martens, Hierarchical
reserve from coronary angiography) study, JACC:
cluster-based partial least squares regression
Cardiovascular Interventions 6 (2) (2013) 149–157.
(hc-plsr) is an efficient tool for metamodelling of
326. B.L. Nørgaard, J. Leipsic, S. Gaur, S. Seneviratne, nonlinear dynamic models, BMC Systems Biology
B.S. Ko,H.Ito,J.M.Jensen, L. Mauri, B. De Bruyne, 5 (1) (2011) 90.
H. Bezerra, et al., Diagnostic performance of 334. L. Itu, S. Rapaka, T. Passerini, B. Georgescu, C.
noninvasive fractional flow reserve derived from Schwemmer, M. Schoebinger, T. Flohr, P. Sharma,
coronary computed tomography angiography in D. Comaniciu, A machine-learning approach for
suspected coronary artery disease: the nxt trial computation of fractional flow reserve from
(analysis of coronary blood flow using ct coronary computed tomography, Journal of
angiography: next steps), Journal of the American Applied Physiology 121 (1) (2016) 42–52.
College of Cardiology 63 (12) (2014) 1145–1155. 335. S. Grosskopf, C. Biermann, K. Deng, Y. Chen,
327. M.I. Papafaklis, T. Muramatsu, Y. Ishibashi, L.S. Accurate, fast, and robust vessel contour
Lakkas, S. Nakatani, C.V. Bourantas, J. Ligthart, Y. segmentation of cta using an adaptive
Onuma, M. Echavarria-Pinto, G. Tsirka, et al., Fast self-learning edge model, in: Medical Imaging
virtual functional assessment of intermediate 2009: Image Processing, vol. 7259, International
coronary lesions using routine angiographic data Society for Optics and Photonics, 2009, p. 72594D.
and blood flow simulation in humans: 336. S. El Sayed, E.A. El Sawa, A.E. Atta-Alla, E.A. El,
comparison with pressure wire-fractional flow K.H.H. Baassiri, Morphometric study of the right
reserve, EuroIntervention: Journal of EuroPCR in coronary artery, International Journal of Anatomy
Collaboration with the Working Group on and Research 3 (3) (2015) 1362–1370.
Interventional Cardiology of the European Society 337. G.S. Kassab, Scaling laws of vascular trees: of form
of Cardiology 10 (5) (2014) 574–583. and function, American Journal of Physiology.