Page 242 - Artificial Intelligence for Computational Modeling of the Heart
P. 242
Bibliography 215
88. P. Colli-Franzone, L. Guerri, M. Pennachio, B. 99. M. Chhay, Y. Coudière, R. Turpault, How to
Taccardi, Spread of excitation in 3-d models of the Compute the Extracellular Potential in
anisotropic cardiac tissue. ii. Effects of fiber Electrocardiology From an Extended
architecture and ventricular geometry, Monodomain Model, 2012.
Mathematical Biosciences 147 (1998) 131–171. 100. P.J. Hunter, A.J. Pullan, B.H. Smaill, Modeling total
89. R.C. Kerckoffs, O.P. Faris, P.H. Bovendeerd, F.W. heart function, Annual Review of Biomedical
Prinzen, K. Smits, E.R. McVeigh, T. Arts, Timing of Engineering 5 (1) (2003) 147–177.
depolarization and contraction in the paced 101. Y.-c. Fung, Biomechanics: Mechanical Properties
canine left ventricle: model and experiment, of Living Tissues, Springer Science & Business
Journal of Cardiovascular Electrophysiology 14 Media, 2013.
(2003) S188–S195. 102. S.Göktepe,A.Menzel, E. Kuhl,The generalized hill
90. F.N. Wilson, A.G. Macleod, P.S. Barker, The model: a kinematic approach towards active
potential variations produced by the heart beat at muscle contraction, Journal of the Mechanics and
the apices of einthoven’s triangle, American Heart Physics of Solids 72 (2014) 20–39.
Journal 7 (2) (1931) 207–211. 103. D.Chapelle,P.LeTallec, P. Moireau,M.Sorine,
91. F.N.Wilson, F.D. Johnston,F.F.Rosenbaum,H. Energy-preserving muscle tissue model:
Erlanger, C.E. Kossmann, H. Hecht, N. Cotrim, formulation and compatible discretizations,
R.M. de Oliveira, R. Scarsi, P.S. Barker, The International Journal of Multiscale Computational
precordial electrocardiogram, American Heart Engineering 10 (2) (2012).
Journal 27 (1) (1944) 19–85. 104. K.-J. Bathe, Finite Element Procedures,
Klaus-Jurgen Bathe, 2006.
92. A. Lyon, A. Mincholé, J.P. Martínez, P. Laguna, B.
Rodriguez, Computational techniques for ecg 105. S. Marchesseau, T. Heimann, S. Chatelin, R.
analysis and interpretation in light of their Willinger, H. Delingette, Fast porous
contribution to medical advances, Journal of the visco-hyperelastic soft tissue model for surgery
Royal Society Interface 15 (138) (2018) 20170821. simulation: application to liver surgery, Progress
in Biophysics and Molecular Biology 103 (2–3)
93. D.M. Mirvis, Body Surface Electrocardiographic (2010) 185–196.
Mapping, vol. 82, Springer Science & Business 106. K.Miller, G. Joldes,D.Lance,A.Wittek, Total
Media, 2012.
Lagrangian explicit dynamics finite element
94. Y. Rudy, The electrocardiogram and its algorithm for computing soft tissue deformation,
relationship to excitation of the heart, Communications in Numerical Methods in
Developments in Cardiovascular Medicine (1995),
Engineering 23 (2) (2007) 121–134.
151:201.
107. S.A.Niederer, J. Lumens,N.A.Trayanova,
95. B. Messinger-Rapport, Y. Rudy, Noninvasive
Computational models in cardiology, Nature
recovery of epicardial potentials in a realistic Reviews Cardiology (2018) 1.
heart-torso geometry. Normal sinus rhythm, 108. W. Kroon, T. Delhaas, T. Arts, P. Bovendeerd,
Circulation Research 66 (4) (1990) 1023–1039. Computational modeling of volumetric soft tissue
96. P. Colli-Franzone, L. Guerri, S. Tentoni, C. growth: application to the cardiac left ventricle,
Viganotti, S. Baruffi, S. Spaggiari, B. Taccardi, A Biomechanics and Modeling in Mechanobiology
mathematical procedure for solving the inverse 8 (4) (2009) 301–309.
potential problem of electrocardiography. Analysis 109. S. Göktepe, O.J. Abilez, K.K. Parker, E. Kuhl, A
of the time-space accuracy from in vitro multiscale model for eccentric and concentric
experimental data, Mathematical Biosciences cardiac growth through sarcomerogenesis, Journal
77 (1–2) (1985) 353–396. of Theoretical Biology 265 (3) (2010) 433–442.
97. R.C. Barr, M. Spach, Inverse calculation of qrs-t 110. R.C. Kerckhoffs, J.H. Omens, A.D. McCulloch, A
epicardial potentials from body surface potential single strain-based growth law predicts concentric
distributions for normal and ectopic beats in the and eccentric cardiac growth during pressure and
intact dog, Circulation Research 42 (5) (1978) volume overload, Mechanics Research
661–675. Communications 42 (2012) 40–50.
98. J. Duchateau, F. Sacher, T. Pambrun, N. Derval, J. 111. N. Cohen, V.S. Deshpande, J.W. Holmes, R.M.
Chamorro-Servent, A. Denis, S. Ploux, M. Hocini, McMeeking, A microscopically motivated model
P. Jaïs, O. Bernus, et al., Performance and for the remodeling of cardiomyocytes,
limitations of noninvasive cardiac activation Biomechanics and Modeling in Mechanobiology
mapping, Heart Rhythm 16 (3) (2019) 435–442. (2019) 1–13.