Page 242 - Artificial Intelligence for Computational Modeling of the Heart
P. 242

Bibliography 215





                      88. P. Colli-Franzone, L. Guerri, M. Pennachio, B.  99. M. Chhay, Y. Coudière, R. Turpault, How to
                          Taccardi, Spread of excitation in 3-d models of the  Compute the Extracellular Potential in
                          anisotropic cardiac tissue. ii. Effects of fiber  Electrocardiology From an Extended
                          architecture and ventricular geometry,     Monodomain Model, 2012.
                          Mathematical Biosciences 147 (1998) 131–171.  100. P.J. Hunter, A.J. Pullan, B.H. Smaill, Modeling total
                      89. R.C. Kerckoffs, O.P. Faris, P.H. Bovendeerd, F.W.  heart function, Annual Review of Biomedical
                          Prinzen, K. Smits, E.R. McVeigh, T. Arts, Timing of  Engineering 5 (1) (2003) 147–177.
                          depolarization and contraction in the paced  101. Y.-c. Fung, Biomechanics: Mechanical Properties
                          canine left ventricle: model and experiment,  of Living Tissues, Springer Science & Business
                          Journal of Cardiovascular Electrophysiology 14  Media, 2013.
                          (2003) S188–S195.                      102. S.Göktepe,A.Menzel, E. Kuhl,The generalized hill
                      90. F.N. Wilson, A.G. Macleod, P.S. Barker, The  model: a kinematic approach towards active
                          potential variations produced by the heart beat at  muscle contraction, Journal of the Mechanics and
                          the apices of einthoven’s triangle, American Heart  Physics of Solids 72 (2014) 20–39.
                          Journal 7 (2) (1931) 207–211.          103. D.Chapelle,P.LeTallec, P. Moireau,M.Sorine,
                      91. F.N.Wilson, F.D. Johnston,F.F.Rosenbaum,H.  Energy-preserving muscle tissue model:
                          Erlanger, C.E. Kossmann, H. Hecht, N. Cotrim,  formulation and compatible discretizations,
                          R.M. de Oliveira, R. Scarsi, P.S. Barker, The  International Journal of Multiscale Computational
                          precordial electrocardiogram, American Heart  Engineering 10 (2) (2012).
                          Journal 27 (1) (1944) 19–85.           104. K.-J. Bathe, Finite Element Procedures,
                                                                     Klaus-Jurgen Bathe, 2006.
                      92. A. Lyon, A. Mincholé, J.P. Martínez, P. Laguna, B.
                          Rodriguez, Computational techniques for ecg  105. S. Marchesseau, T. Heimann, S. Chatelin, R.
                          analysis and interpretation in light of their  Willinger, H. Delingette, Fast porous
                          contribution to medical advances, Journal of the  visco-hyperelastic soft tissue model for surgery
                          Royal Society Interface 15 (138) (2018) 20170821.  simulation: application to liver surgery, Progress
                                                                     in Biophysics and Molecular Biology 103 (2–3)
                      93. D.M. Mirvis, Body Surface Electrocardiographic  (2010) 185–196.
                          Mapping, vol. 82, Springer Science & Business  106. K.Miller, G. Joldes,D.Lance,A.Wittek, Total
                          Media, 2012.
                                                                     Lagrangian explicit dynamics finite element
                      94. Y. Rudy, The electrocardiogram and its     algorithm for computing soft tissue deformation,
                          relationship to excitation of the heart,   Communications in Numerical Methods in
                          Developments in Cardiovascular Medicine (1995),
                                                                     Engineering 23 (2) (2007) 121–134.
                          151:201.
                                                                 107. S.A.Niederer, J. Lumens,N.A.Trayanova,
                      95. B. Messinger-Rapport, Y. Rudy, Noninvasive
                                                                     Computational models in cardiology, Nature
                          recovery of epicardial potentials in a realistic  Reviews Cardiology (2018) 1.
                          heart-torso geometry. Normal sinus rhythm,  108. W. Kroon, T. Delhaas, T. Arts, P. Bovendeerd,
                          Circulation Research 66 (4) (1990) 1023–1039.  Computational modeling of volumetric soft tissue
                      96. P. Colli-Franzone, L. Guerri, S. Tentoni, C.  growth: application to the cardiac left ventricle,
                          Viganotti, S. Baruffi, S. Spaggiari, B. Taccardi, A  Biomechanics and Modeling in Mechanobiology
                          mathematical procedure for solving the inverse  8 (4) (2009) 301–309.
                          potential problem of electrocardiography. Analysis  109. S. Göktepe, O.J. Abilez, K.K. Parker, E. Kuhl, A
                          of the time-space accuracy from in vitro   multiscale model for eccentric and concentric
                          experimental data, Mathematical Biosciences  cardiac growth through sarcomerogenesis, Journal
                          77 (1–2) (1985) 353–396.                   of Theoretical Biology 265 (3) (2010) 433–442.
                      97. R.C. Barr, M. Spach, Inverse calculation of qrs-t  110. R.C. Kerckhoffs, J.H. Omens, A.D. McCulloch, A
                          epicardial potentials from body surface potential  single strain-based growth law predicts concentric
                          distributions for normal and ectopic beats in the  and eccentric cardiac growth during pressure and
                          intact dog, Circulation Research 42 (5) (1978)  volume overload, Mechanics Research
                          661–675.                                   Communications 42 (2012) 40–50.
                      98. J. Duchateau, F. Sacher, T. Pambrun, N. Derval, J.  111. N. Cohen, V.S. Deshpande, J.W. Holmes, R.M.
                          Chamorro-Servent, A. Denis, S. Ploux, M. Hocini,  McMeeking, A microscopically motivated model
                          P. Jaïs, O. Bernus, et al., Performance and  for the remodeling of cardiomyocytes,
                          limitations of noninvasive cardiac activation  Biomechanics and Modeling in Mechanobiology
                          mapping, Heart Rhythm 16 (3) (2019) 435–442.  (2019) 1–13.
   237   238   239   240   241   242   243   244   245   246   247