Page 8 - Artificial Intelligence for Computational Modeling of the Heart
P. 8

Contents  vii




                       3.1 Introduction. . ................................................ 97
                       3.2 Parsing of cardiac and vascular structures. ..................... 98

                             3.2.1 From shallow to deep marginal space learning ............ 98
                             3.2.2 Intelligent agent-driven image parsing . . ................. 105
                             3.2.3 Deep image-to-image segmentation ..................... 112
                       3.3 Structure tracking ........................................... 113
                       3.4 Summary ................................................... 115
                     Chapter 4 Data-driven reduction of cardiac models . . . . . . ........... 117
                                  Lucian Mihai Itu, Felix Meister, Puneet Sharma, Tiziano Passerini

                       4.1 Deep-learning model for real-time, non-invasive fractional flow
                             reserve . .................................................... 118
                             4.1.1 Introduction ........................................... 118

                             4.1.2 Methods............................................... 120
                             4.1.3 Results ................................................ 128
                             4.1.4 Discussion............................................. 130
                       4.2 Meta-modeling of atrial electrophysiology..................... 136
                             4.2.1 Methods............................................... 139
                             4.2.2 Experiments and results ................................ 144
                             4.2.3 Discussion............................................. 153

                       4.3 Deep learning acceleration of biomechanics ................... 154
                             4.3.1 Motivation. ............................................ 154
                             4.3.2 Methods............................................... 154
                             4.3.3 Evaluation ............................................. 156
                       4.4 Summary ................................................... 160
                     Chapter 5 Machine learning methods for robust parameter estimation. 161
                                  Dominik Neumann, Tommaso Mansi

                       5.1 Introduction. . ............................................... 161
                       5.2 A regression approach to model parameter estimation ......... 163
                             5.2.1 Data-driven estimation of myocardial electrical diffusivity . 163
                             5.2.2 Experiments and results ................................ 165
                       5.3 Reinforcement learning method for model parameter estimation168
                             5.3.1 Parameter estimation as a Markov decision process ...... 170
   3   4   5   6   7   8   9   10   11   12   13