Page 99 - Artificial Intelligence for the Internet of Everything
P. 99

Active Inference in Multiagent Systems  85


              Friston, K. (2012). A free energy principle for biological systems. Entropy, 14(11),
                 2100–2121.
              Friston, K., Samothrakis, S., & Montague, R. (2012). Active inference and agency: optimal
                 control without cost functions. Biological Cybernetics, 106(8–9), 523–541.
              Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J.
                 (2013). The anatomy of choice: active inference and agency. Frontiers in Human Neuro-
                 science, 7,1–18, Article 598.
              Friston, K., Thornton, C., & Clark, A. (2012). Free-energy minimization and the dark-room
                 problem. Frontiers in Psychology, 3,1–7, Article 130.
              Kleinman, D., Baron, S., & Levison, W. (1971). A control theoretic approach to manned-
                 vehicle systems analysis. IEEE Transactions on Automatic Control, 16(6), 824–832.
              Levchuk, G., Pattipati, K., Fouse, A., & Serfaty, D. (2017). Application of free energy min-
                 imization to the design of adaptive multi-agent teams. In Disruptive technologies in sensors
                 and sensor system. SPIE DSO.
              Ljung, L., & Glad, T. (1994). Modeling of dynamic systems. Englewood Cliffs, NJ: Prentice
                 Hall.
              Pattipati, K. R., Kleinman, D. L., & Ephrath, A. R. (1983). A dynamic decision model of
                 human task selection performance. IEEE Transactions on Systems, Man, and Cybernetics, 2,
                 145–166.
              Pellerin, C., 2015. Work: human-machine teaming represents defense technology future.
                 Department of Defense News. , Retrieved from https://www.defense.gov/News/
                 Article/Article/628154/work-human-machine-teaming-represents-defense-
                 technology-future/. Accessed 3 January 2018.
              Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware com-
                 puting for the internet of things: a survey. IEEE Communication Surveys and Tutorials, 16
                 (1), 414–454.
              Rivkin, J. W., & Siggelkow, N. (2003). Balancing search and stability: interdependencies
                 among elements of organizational design. Management Science, 49(3), 290–311.
              Schl€apfer, M., Bettencourt, L. M., Grauwin, S., Raschke, M., Claxton, R., Smoreda, Z.,
                 et al. (2014). The scaling of human interactions with city size. Journal of the Royal Society
                 Interface, 11(98), 20130789.
              Smith, O. J. (1959). A controller to overcome dead time. ISA Journal, 6,28–33.
              West, G. (2017). Scale: The universal laws of growth, innovation, sustainability, and the pace of life in
                 organisms, cities, economies, and companies. Penguin.
              Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of things—a survey of topics
                 and trends. Information Systems Frontiers, 17(2), 261–274.
              Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2005). Constructing free-energy approxima-
                 tions and generalized belief propagation algorithms. IEEE Transactions on Information The-
                 ory, 51(7), 2282–2312.


              FURTHER READING

              Siggelkow, N., & Rivkin, J. W. (2005). Speed and search: designing organizations for tur-
                 bulence and complexity. Organization Science, 16(2), 101–122.
   94   95   96   97   98   99   100   101   102   103   104