Page 147 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 147

136    CHAPTER 6 Evolving and Spiking Connectionist Systems




                          [92] H. Widiputra, R. Pears, N. Kasabov, Dynamic interaction network versus localized
                              trends model for multiple time-series prediction, Cybernetics and Systems 42 (2)
                              (2011) 100e123.
                          [93] A. Ghobakhlou, M. Watts, N. Kasabov, Adaptive speech recognition with evolving
                              connectionist systems, Information Sciences 156 (2003) 71e83.
                          [94] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its
                              application to conduction and excitation in nerve, Journal of Physiology 117 (4)
                              (1952) 500e544.
                          [95] J.J. Hopfield, Pattern recognition computation using action potential timing for stim-
                              ulus representation, Nature 376 (6535) (1995) 33e36.
                          [96] E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Transactions
                              on Neural Networks 15 (5) (2004) 1063e1070.
                          [97] S. Thorpe, A. Delorme, R. van Rullen, Spike-based strategies for rapid processing,
                              Neural Networks 14 (6e7) (2001) 715e725.
                          [98] D. Verstraeten, B. Schrauwen, M. D’Haene, D. Stroobandt, An experimental unifica-
                              tion of reservoir computing methods, Neural Networks 20 (3) (2007) 391e403.
                          [99] N.K. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural
                              networks for on-line spatio- and spectro-temporal pattern recognition, Neural Net-
                              works 41 (2013) 188e201.
                         [100] S. Song, K.D. Miller, L.F. Abbott, Competitive Hebbian learning through spike-
                              timing-dependent synaptic plasticity, Nature Neuroscience 3 (9) (2000) 919e926.
                         [101] S. Soltic, N.K. Kasabov, Knowledge extraction from evolving spiking neural networks
                              with rank order population coding, International Journal of Neural Systems 20 (6)
                              (2010) 437e445.
                         [102] Y. Chen, J. Hu, N.K. Kasabov, Z. Hou, L. Cheng, NeuroCubeRehab: a Pilot study for
                              EEG classification in rehabilitation practice based on spiking neural networks, in:
                              Proc. Of the 20th Int’l Conf. on Neural Information Processing, South Korea,
                              November 2013, 2013, pp. 70e77.
                         [103] EU FP7 Marie Curie EvoSpike Project, INI/ETH/UZH, 2011-2012. (http://ncs.ethz.
                              ch/projects/evospike).
                         [104] S.G. Wysoski, L. Benuskova, N.K. Kasabov, Evolving spiking neural networks for au-
                              diovisual information processing, Neural Networks 23 (7) (2010) 819e835.
                         [105] S. Schliebs, M. Defoin-Platel, S. Worner, N.K. Kasabov, Integrated feature and param-
                              eter optimization for evolving spiking neural networks: exploring heterogeneous prob-
                              abilistic models, Neural Networks 22 (5e6) (2009) 623e632.
                         [106] N.K. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning
                              and understanding of spatio-temporal brain data, Neural Networks 52 (2014) 62e76.
                         [107] N.K. Kasabov, V.L. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. Krishnamurthi,
                              M. Othman, P. Parmar, Evolving spiking neural networks for personalized modelling
                              of spatio-temporal data and early prediction of events: a case study on stroke, Neuro-
                              computing 134 (2014) 269e279.
                         [108] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley Longman Publishing
                              Co, Boston, Massachusetts, USA, 1989.
                         [109] M. Mahowald, C. Mead, The silicon retina, Scientific American 264 (5) (1991) 76e82.
                         [110] F. Corradi, G. Indiveri, A neuromorphic event-based neural recording system for smart
                              brain-machine-Interfaces, IEEE Transactions on Biomedical Circuits and Systems 9
                              (5) (2015) 699e709.
   142   143   144   145   146   147   148   149   150   151   152