Page 272 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 272

CHAPTER


                  Multiview Learning in

                  Biomedical Applications                            13





                                               Angela Serra, Paola Galdi, Roberto Tagliaferri
                                         NeuRoNe Lab, DISA-MIS, University of Salerno, Fisciano, Italy


                  CHAPTER OUTLINE

                  1. Introduction .......................................................................................................265
                  2. Multiview Learning.............................................................................................266
                    2.1 Integration Stage................................................................................. 267
                    2.2 Type of Data ....................................................................................... 268
                    2.3 Types of Analysis ................................................................................ 269
                  3. Multiview Learning in Bioinformatics...................................................................269
                    3.1 Patient Subtyping ............................................................................... 269
                    3.2 Drug Repositioning.............................................................................. 272
                  4. Multiview Learning in Neuroinformatics...............................................................273
                    4.1 Automated Diagnosis Support Tools for Neurodegenerative Disorders....... 273
                    4.2 Multimodal Brain Parcellation .............................................................. 275
                  5. Deep Multimodal Feature Learning ......................................................................275
                    5.1 Deep Learning Application to Predict Patient’s Survival.......................... 276
                    5.2 Multimodal Neuroimaging Feature Learning With Deep Learning ............. 276
                  6. Conclusions.......................................................................................................277
                  References .............................................................................................................278


                  1. INTRODUCTION
                  In the past decades there has been a growing interest in applying data integration
                  methods in the field of biomedical research, with the consequent proliferation of sci-
                  entific literature devoted to this topic.
                     Multiview learning is the branch of machine learning concerned with the analysis
                  of multimodal data, that is, patterns represented by different sets of features extracted
                  from multiple data sources. Classical examples of multiview medical data are the
                  different clinical tests to which a patient can be subjected (see Fig. 13.1). These
                  data are generally not homogeneous (for example, they can consist of images, signals,
                  or text) but when analyzed together they help to better understand the patient’s
                  medical condition.
                     The reasons for the fast spreading of this learning approach lie in the constant
                  increase of real-world problems where heterogeneous data are available for
                                                                                        265
                  Artificial Intelligence in the Age of Neural Networks and Brain Computing. https://doi.org/10.1016/B978-0-12-815480-9.00013-X
                  Copyright © 2019 Elsevier Inc. All rights reserved.
   267   268   269   270   271   272   273   274   275   276   277