Page 286 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 286

References    279




                  [15] B. Wang, A.M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, B. Haibe-Kains,
                      A. Goldenberg, Similarity network fusion for aggregating data types on a genomic
                      scale, Nature Methods 11 (3) (2014) 333e337. Nature Publishing Group.
                  [16] A. Serra, M. Fratello, V. Fortino, G. Raiconi, R. Tagliaferri, D. Greco, MVDA: A Multi-
                      view genomic data integration methodology, BMC Bioinformatics 16 (1) (2015) 261.
                      BioMed Central Ltd.
                  [17] S.H. Sleigh, C.L. Barton, Repurposing strategies for therapeutics, Pharmaceutical
                      Medicine 24 (3) (2010) 151e159. Springer.
                  [18] J.A. DiMasi, R.W. Hansen, H.G. Grabowski, L. Lasagna, Cost of innovation in the phar-
                      maceutical industry, Journal of Health Economics 10 (2) (1991) 107e142. Elsevier.
                  [19] K.A. O’Connor, B.L. Roth, Finding new tricks for old drugs: an efficient route for
                      public-sector drug discovery, Nature Reviews Drug Discovery 4 (12) (2005) 1005e1014.
                      Nature Publishing Group.
                  [20] J.T. Dudley, M. Sirota, M. Shenoy, R.K. Pai, S. Roedder, A.P. Chiang, A.A. Morgan,
                      M.M. Sarwal, P. Jay Pasricha, A.J. Butte, Computational repositioning of the anticon-
                      vulsant topiramate for inflammatory bowel disease, Science Translational Medicine 3
                      (96) (2011) 96ra76. American Association for the Advancement of Science.
                  [21] A. Gottlieb, G.Y. Stein, E. Ruppin, R. Sharan, PREDICT: a method for inferring novel
                      drug indications with application to personalized medicine, Molecular Systems Biology
                      7 (1) (2011) 496. EMBO Press.
                  [22] P. Sanseau, P. Agarwal, M.R. Barnes, T. Pastinen, J. Brent Richards, L.R. Cardon,
                      V. Mooser, Use of genome-wide association studies for drug repositioning, Nature
                      Biotechnology 30 (4) (2012) 317e320. Nature Research.
                  [23] F. Iorio, R. Bosotti, E. Scacheri, V. Belcastro, P. Mithbaokar, R. Ferriero, L. Murino,
                      et al., Discovery of drug mode of action and drug repositioning from transcriptional
                      responses, Proceedings of the National Academy of Sciences 107 (33) (2010)
                      14621e14626. National Acad Sciences.
                  [24] N. Smirnov, Table for estimating the goodness of fit of empirical distributions, The
                      Annals of Mathematical Statistics 19 (2) (1948) 279e281. JSTOR.
                  [25] F. Napolitano, Y. Zhao, V.M. Moreira, R. Tagliaferri, J. Kere, M. D’Amato, D. Greco,
                      Drug repositioning: a machine-learning approach through data integration, Journal of
                      Cheminformatics 5 (1) (2013) 30. Springer.
                  [26] B. Thirion, G. Varoquaux, E. Dohmatob, J.-B. Poline, Which FMRI clustering gives
                      good brain parcellations? Frontiers in Neuroscience 8 (2014). Frontiers Media SA.
                  [27] M.F. Glasser, T.S. Coalson, E.C. Robinson, C.D. Hacker, J. Harwell, E. Yacoub,
                      K. Ugurbil, et al., A multi-modal parcellation of human cerebral cortex, Nature
                      (2016). Nature Research.
                  [28] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436e444.
                      Nature Research.
                  [29] K. Chaudhary, O.B. Poirion, L. Lu, L. Garmire, Deep learning based multi-omics inte-
                      gration robustly predicts survival in liver cancer, BioRxiv, Cold Spring Harbor Labs
                      Journals (2017) 114892.
                  [30] Y. Bengio, et al., Learning deep architectures for Ai, Foundations and Trends in
                      Machine Learning 2 (1) (2009) 1e127. Now Publishers, Inc.
                  [31] S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, M.J. Fulham, others, Multi-
                      modal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease,
                      IEEE Transactions on Biomedical Engineering 62 (4) (2015) 1132e1140. IEEE.
   281   282   283   284   285   286   287   288   289   290   291