Page 43 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 43

30     CHAPTER 1 Nature’s Learning Rule: The Hebbian-LMS Algorithm




                         [15] J. MacQueen, Some methods for classification and analysis of multivariate observations,
                             Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
                             1 (14) (1967) 281e297.
                         [16] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via
                             the EM algorithm, Journal of the Royal Statistical Society Series B (Methodological) 39
                             (1) (1977) 1e38.
                         [17] C.F.J. Wu, On the convergence properties of the EM algorithm, Annals of Statistics 11
                             (1) (1983) 95e103.
                         [18] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering
                             clusters in large spatial databases with noise, Proceedings of Second International Con-
                             ference on Knowledge Discovery and Data Mining (KDD) 96 (34) (1996) 226e231.
                         [19] M. Lichman, UCI Machine Learning Repository, 2013. http://archive.ics.uci.edu/ml.
                         [20] D. Purves, G.J. Augustine, D. Fitzpatrick, A.-S. LaMantia, J.O. McNamara, S.M. Wiliams,
                             Neuroscience (2008). Sinauer Associates, Inc.
                         [21] H.R. Wilson, J.D. Cowan, Excitatory and inhibitory interactions in localized popula-
                             tions of model neurons, Biophysical Journal 12 (1) (1972) 1e24.
                         [22] C. van Vreeswijk, H. Sompolinsky, Chaos in neural networks with balanced excitatory
                             and inhibitory activity, Science 274 (5293) (1996) 1724e1726.
                         [23] C. Luscher, R.C. Malenka, NMDA receptor-dependent long-term potentiation and long-
                             term depression (LTP/LTD), Cold Spring Harbor Perspectives in Biology 4 (2012)
                             1e15.
                         [24] M.A. Lynch, Long-term potentiation and memory, Physiological Reviews 84 (1) (2004)
                             87e136.
                         [25] J.F. Prather, R.K. Powers, T.C. Cope, Amplification and linear summation of synaptic
                             effects on motoneuron firing rate, Journal of Neurophysiology 85 (1) (2001) 43e53.
                         [26] G.G. Turrigano, K.R. Leslie, N.S. Desai, N.C. Rutherford, S.B. Nelson, Activity depen-
                             dent scaling of quantal amplitude in neocortical neurons, Nature 391 (1998) 892e896.
                         [27] G.G. Turrigano, S.B. Nelson, Hebb and homeostasis in neuronal plasticity, Current
                             Opinion in Neurobiology 10 (3) (2000) 358e364.
                         [28] G.G. Turrigano, The self-tuning neuron: synaptic scaling of excitatory synapses, Cell
                             135 (3) (2008) 422e435.
                         [29] N. Virtureira, Y. Goda, The interplay between hebbian and homeostasis synaptic
                             plasticity, The Journal of Cell Biology 203 (2) (2013) 175e186.
                         [30] D. Stellwagen, R.C. Malenka, Synaptic scaling mediated by glial tnf-a, Nature 440
                             (2006) 1054e1059.
                         [31] V.R. Kompella, M. Luciw, J. Schmidhuber, Incremental slow feature analysis: adaptive
                             low-complexity slow feature updating from high-dimensional input streams, Neural
                             Computation 24 (11) (2012) 2994e3024.
                         [32] Z.K. Malik, A. Hussain, J. Wu, Novel biologically inspired approaches to extracting
                             online information from temporal data, Cognitive Computation 6 (3) (2014) 595e607.
                         [33] Y. Choe, Anti-hebbian learning, in: Encyclopedia of Computational Neuroscience,
                             2014, pp. 1e4.
   38   39   40   41   42   43   44   45   46   47   48