Page 183 - Autonomous Mobile Robots
P. 183

Landmarks and Triangulation in Navigation                  167

                                                                              L
                                                                           L
                                 Assume that the position of the lens center is (x , y ). According to
                                                                           c  c
                              Pythagoras theory, we have:
                                                    L    L 2   L 2   2
                                                   (p − x ) + (y ) = l
                                                    1    c     c     1
                                                                                       (4.24)
                                                    L
                                                         L 2
                                                               L 2
                                                   (p − x ) + (y ) = l 2
                                                    2    c     c     2
                                            L
                              Considering that y is always a positive value, we have:
                                            c
                                                       2   2   L  2  L 2
                                                       l − l + p  − p
                                                  L    1  2    2    1
                                                 
                                                 x =
                                                   c         L   L
                                                          2(x − x )
                                                             2   1                     (4.25)
                                                 
                                                  L     2    L   L 2
                                                 
                                                  y =   l − (x − p )
                                                   c
                                                              c
                                                                  1
                                                         1
                              In Figure 4.9, the direction may be easily obtained as:
                                                              L   L            I
                                                            p − x            x r
                                                        −1   1    c      −1   1
                                        θ = ∠1 + ∠2 = tan            + tan             (4.26)
                                                               y c L          f
                              By combining Equation (4.25) and Equation (4.26), we have
                                                        2   2    L 2  L 2    
                                                         l − l + p  − p
                                                         1   2    2    1
                                                              L   L          
                                            L            2(p − p )         
                                           x c                2   1          

                                                           2                 
                                                                 L
                                                                     L 2
                                           L 
                                          y  =          l − (x − p )               (4.27)
                                            c
                                                                 c
                                                            1
                                                                     1
                                                 
                                                                              
                                           θ L                               
                                                          L
                                            c           p − x L           I  
                                                                           1
                                                   tan            + tan
                                                    −1   1    c      −1  x r 
                                                            y L            f
                                                            c
                                            L
                                 We substitute P into Equation (4.21), and then the localization is com-
                              pleted. Equation (4.27) is the result of localization. The coordinates given by
                              the program are in {L}. The errors of this method are caused by the imprecise
                              extraction of each character. Differentiating Equation (4.27), we have:
                                                        1
                                                                                 
                                                             (l 1 dl 1 − l 2 dl 2 )
                                                           L
                                                       L
                                                     (p − p )
                                                                                 
                                   L                2   1         L   L        
                                  dx c            l 1              x − p 1       
                                                                     c
                                          
                                           
              dl 1 − 
           dx L 
                                    L                    2                  2         (4.28)
                                                                               c 
                                    c          2    L   L         2    L    L
                                 dy  =     l − (x − p )        l − (x − p )    
                                                    c
                                                                       c
                                                                  1
                                                        1
                                                                            1
                                               1
                                  dθ L                                           
                                    c           I          L  L   L              
                                               dx         2y (p − x )         dy
                                                                               L 
                                                                   c
                                                            c
                                                                          L
                                                1   2  −  2   1        dx +    c 
                                                                          c
                                                                                2
                                                               L
                                                                    L 2
                                                I
                                           1 + (x r/f )  y L c  + (p − x )    y L c
                                                                    c
                                                1              1
                              © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c004” — 2006/3/31 — 16:42 — page 167 — #19
   178   179   180   181   182   183   184   185   186   187   188