Page 294 - Autonomous Mobile Robots
P. 294

Adaptive Control of Mobile Robots                          281

                                 Denote L = L − L, R = R − R, K a = K a − K a , and K N = K N − K N .
                                                        ˆ ˜
                                                                                     ˆ
                                                                           ˜
                                                                    ˆ
                                               ˆ ˜
                                       ˜
                                 Substituting (7.38) into (7.27), we have the error dynamics for the actuator
                              dynamic subsystem
                                                                     ˜
                                              L˙e I =−K I e I + LI d + RI + K a Q + H  (7.46)
                                                                ˜
                                                           ˜ ˙
                              The closed-loop stability is summarized in Theorem 7.2.
                              Theorem 7.2  For a nonholonomic system described by (7.25)–(7.27), using
                              the control law (7.41) with the virtual control (7.33) and the parameter adapta-
                              tion laws (7.35), (7.40), (7.42)–(7.44), Z is globally asymptotically stabilizable
                              at the origin Z = 0.


                              Proof  For the convenience of proof, define the following three functions:

                                                                   r
                                         1  T         1  T −1   1     −1     2
                                     V 1 = ˜u M 4 (Z)˜u + θ    ˜ θ +  γ N  K Ni K NInvi  (7.47)
                                                       ˜
                                                                            ˜
                                         2            2         2
                                                                  i=1
                                          m−1
                                             1        1               1
                                                 2       2                 2
                                     V 2 =      z j,2  +  z j,3  + ··· +  z            (7.48)
                                             2       ρ j,1          n j −2  j,n j
                                          j=1                       i=1  ρ j,i
                                                     r           r
                                         1  T     1     −1 2   1     −1 2
                                                                       ˜
                                                          ˜
                                     V 3 = e Le I +    γ L  L +     γ R  R i
                                            I
                                                           i
                                         2        2            2
                                                    i=1          i=1
                                               r            r
                                            1     −1  2  1     −1  2
                                                                  ˜
                                                    ˜
                                          +      γ a  K +     γ N  K Ni                (7.49)
                                                     ai
                                            2            2
                                              i=1          i=1
                                                                           ˙  ˙
                              where ˜ θ = ˆ θ − θ. Since θ is a constant vector, we have ˆ θ = ˜ θ
                                 The derivative of V 1 along Equation (7.45) is given as
                                                  1  T         T −1 ˙
                                        T
                                               ˙
                                   ˙
                                  V 1 =˜u M 4 (Z)˜u + u M 4 (Z)˜u + ˜ θ    ˜ θ
                                                      ˙
                                                   ˜
                                                  2
                                           T
                                        T
                                                                                  T −1 ˙
                                                                T
                                                   T
                                     =˜u (S   1 θ − S K e S 3 ˜u −   + S B 3 K N K NInv τ md ) + ˜ θ    ˜ θ
                                                                       ˜
                                               ˜
                                           3       3            3
                                          r
                                             −1         ˙       T T
                                                   ˜
                                                        ˜
                                       +    γ  K Ni K NInvi K NInvi +˜u S B 3 K N e I  (7.50)
                                             N                    3
                                         i=1
                                                        T
                              where the property that M 4 − 2S C 3 is skew-symmetric has been used.
                                                 ˙
                                                        3
                              © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c007” — 2006/3/31 — 16:43 — page 281 — #15
   289   290   291   292   293   294   295   296   297   298   299