Page 26 - Basic Structured Grid Generation
P. 26

Mathematical preliminaries – vector and tensor analysis  15

                          Evaluating the scalar products in eqns (1.98) and (1.99) on background cartesians
                        gives the formulas

                                                    2                  2     k
                                                   ∂ y l  ∂y l  k     ∂ y l ∂x
                                          [ij, k]=          ,    =            .           (1.102)
                                                                ij
                                                       j
                                                    i
                                                                          j
                                                                       i
                                                  ∂x ∂x ∂x k        ∂x ∂x ∂y l
                        Exercise 7. Using eqns (1.100), (1.102), with (1.33) and (1.34), verify the formula
                                                    2
                                                                           2
                                                               2
                                                   ∂ x      k  ∂ y      k  ∂ z
                                                k
                                          k
                                           = K          + L        + M         ,          (1.103)
                                          ij        i  j       i  j        i  j
                                                 ∂x ∂x       ∂x ∂x       ∂x ∂x
                        where (in the obvious notation)
                                      (G 1 x ξ + G 4 x η + G 5 x ς )  (G 4 x ξ + G 2 x η + G 6 x ς )
                                  1                            2
                                K =                       ;  K =                       ;
                                               g                             g
                                      (G 5 x ξ + G 6 x η + G 3 x ς )
                                  3
                                K =
                                               g
                                      (G 1 y ξ + G 4 y η + G 5 y ς )  (G 4 y ξ + G 2 y η + G 6 y ς )
                                  1                            2
                                 L =                      ;  L =                       ;
                                               g                            g
                                      (G 5 y ξ + G 6 y η + G 3 y ς )
                                  3
                                 L =
                                               g
                                      (G 1 z ξ + G 4 z η + G 5 z ς )  (G 4 z ξ + G 2 z η + G 6 z ς )
                                  1                            2
                                M =                       ;  M =                       ;
                                               g                            g
                                      (G 5 z ξ + G 6 z η + G 3 z ς )
                                  3
                                M =                       .
                                               g
                                                                              i
                        Expressions for the derivatives of contravariant base vectors g may be obtained by
                                                           k
                        differentiating eqn (1.6) with respect to x , which gives
                                                   i  ∂g j  ∂g i
                                                  g ·    +     · g j = 0.
                                                     ∂x k   ∂x k
                          Hence
                                     ∂g i        i  ∂g j    i   l       i  l      i
                                         · g j =−g ·   =−g ·   g l =−δ    jk  =−  .       (1.104)
                                                                jk
                                                                        l
                                                                                  jk
                                     ∂x k           ∂x k
                          Comparison with eqn (1.99) now shows that
                                                      ∂g i     i  k
                                                          =−  g .                         (1.105)
                                                               jk
                                                      ∂x j
                          The metric tensor g ij can also be differentiated:
                              ∂g ij   ∂              ∂g j  ∂g i               l        l
                                  =     (g i · g j ) = g i ·  +  · g j = g i ·[jk, l]g +[ik, l]g · g j
                              ∂x k   ∂x k            ∂x k  ∂x k
                                                                l
                                                        l
                                               =[jk, l]δ +[ik, l]δ =[jk, i]+[ik, j].      (1.106)
                                                                j
                                                       i
                        Exercise 8. By differentiating both sides of eqn (1.28), and using eqns (1.101) and
                        (1.106), show that
                                                 ∂g lm    jl  m    jm l
                                                     =−g     jk  − g    .                 (1.107)
                                                                      jk
                                                 ∂x k
   21   22   23   24   25   26   27   28   29   30   31