Page 28 - Basic Structured Grid Generation
P. 28

Mathematical preliminaries – vector and tensor analysis  17

                          Equation (1.110) can be written, using eqn (1.102), as
                                                               l
                                                           m
                                                                      2
                                                2 p
                                               ∂ x      ∂x ∂x ∂x  p  ∂ y k
                                                    =−                m   l  .            (1.112)
                                              ∂y i ∂y j  ∂y i ∂y j ∂y k ∂x ∂x
                          Another formula which will be found useful later may be derived directly from
                        eqn (1.112), i.e.
                                                               m
                                                2 p
                                                                      2
                                               ∂ x   ∂y k    ∂x ∂x l  ∂ y k
                                                         =−                               (1.113)
                                                                      m
                                              ∂y i ∂y j ∂x p  ∂y i ∂y j ∂x ∂x l
                        Exercise 9. Making use of eqn (1.17), deduce that
                                                                    2
                                                  2 p  ∂y k    ml  ∂ y k
                                                (∇ x )     =−g          .                 (1.114)
                                                                    m
                                                      ∂x p        ∂x ∂x l
                        Exercise 10. Derive eqn (1.113) more directly by taking the partial derivative with
                        respect to y j of the Chain Rule
                                                        p
                                                      ∂x ∂y k
                                                              = δ ik .
                                                      ∂y i ∂x p
                          The transformation rule for [ij, k], by comparison with eqn (1.109), may be shown
                        to be
                                                                 m
                                                 2 m
                                                                      n
                                                ∂ x   ∂x p     ∂x ∂x ∂x  p
                                       [ij, k]=  i  j   k  g mp +  i  j  k  [mn, p].      (1.115)
                                               ∂x ∂x ∂x         ∂x ∂x ∂x
                          From eqns (1.100) and (1.108) we obtain
                                                   1
                                               k     kl  ∂g jl  ∂g il  ∂g ij
                                               =    g        +     −       .              (1.116)
                                               ij
                                                   2     ∂x i  ∂x j   ∂x l
                                                                                       ij
                          Contraction on i and k then gives, exploiting the symmetry of g ij and g ,
                                                           1
                                                       i      il  ∂g il
                                                        =   g      .                      (1.117)
                                                       ij        j
                                                           2   ∂x
                          Now if we regard the determinant g of (g ij ) formally as a function of nine elements
                                            1
                        g ij (replacing g 12 with (g 12 + g 21 ),etc.), we have
                                            2
                                                     ∂g     il     il
                                                         = G = gg ,
                                                     ∂g il
                                 ij
                        where (G ) is the matrix of co-factors of (g ij ) given in eqns (1.33) and (1.34). So
                        another chain rule gives
                                                 ∂g    ∂g ∂g il    il  ∂g il
                                                    =          = gg     ,
                                                ∂x j   ∂g il ∂x j   ∂x j
                        leading to the useful expressions
                                              1 1 ∂g    1 ∂          1   ∂  √
                                          i
                                           =         =       (ln g) = √    ( g).          (1.118)
                                          ij        j       j             j
                                              2 g ∂x    2 ∂x          g ∂x
   23   24   25   26   27   28   29   30   31   32   33